
ams/econ 11b supplementary notes ucsc

Constrained optimization.
c© 2016, Yonatan Katznelson

1. Constraints

In many of the optimization problems that arise in economics, there are restrictions on
the values that the independent variables may take.

Example 1. A firm’s cost function is given by

C = 0.05Q2
A + 0.01QAQB + 0.03Q2

B + 10QA + 15QB + 12000, (1)

where QA and QB are the quantities of the firm’s product that are produced in the firm’s
two facilities A and B, respectively. If the firm has a contract to produce 2000 units of
output, then how many units should they produce in each facility to minimize their cost?

The condition that total output should equal 2000, imposes the following restriction on
the variables QA and QB

QA +QB = 2000, (2)

together with the conditions QA, QB ≥ 0, since neither output can be negative. �

The condition in equation (2) is called a constraint because it constrains (restricts) the
possible values of the free variables QA and QB. The function to be optimized (the cost
function, in the example above) is called the objective function in these problems.

Example 2. A firm’s output is given by the Cobb-Douglas model

Q = AKαLβ, (3)

where Q is the firm’s output, K is quantity of the firm’s capital input and L is the quantity
of the firm’s labor input. The constants, α, β and A are all positive and we also assume
that α+ β = 1. If the prices per unit of capital and labor are pK and pL, respectively, and
the firm’s production budget is B, then how should the firm allocate its budget to maximize
its output?

The constraint in this case is given by the equation

pK ·K + pL · L = B, (4)

reflecting the facts that (a) it costs pK ·K + pL ·L to use K units of capital and L units of
labor, and (b) the total cost must equal B. The objective function in this example is the
output, Q. �

In what follows, we’ll see two approaches to solving this type of optimization problem.
One approach, substitution, is more elementary, and uses the constraint to reduce the
number of variables. The second approach, the method of Lagrange multipliers, is more
sophisticated and actually introduces a new variable to the problem.† On the other hand,

†Or more than one new variable, if there is more than one constraint.
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this additional variable yields important information about the optimization problem that
is more difficult to derive using the substitution method. Also, it is often the case, that
the algebra involved in finding the relevant critical points is actually easier in the Lagrange
multiplier approach.

2. Substitution

One approach to solving a constrained optimization problem is to use the constraint (or
constraints, if there is more than one) to reduce the number of variables, and transform the
problem to an unconstrained optimization problem in fewer variables.

Example 3. To illustrate this, let’s solve the cost minimization problem in Example 1.

First, we use the constraint in Equation (2) to express the variable QB in terms of the
variable QA:

QB = 2000−QA.

Next, substitute this expression into the objective function in (1) for QB, to express the
cost function as a function of QA alone:

C(QA) = 0.05Q2
A + 0.01QA(2000−QA) + 0.03(2000−QA)2 (5)

+ 10QA + 15(2000−QA) + 12000.

Since both QA and QB must be nonnegative and since their sum is 2000, it follows that
0 ≤ QA ≤ 2000, and so we have a simple find-the-minimum-on-a-closed-interval problem.
Simplifying the cost function in (5), we find that we need to minimize the function

C(QA) = 0.07Q2
A − 105QA + 162000

on the interval [0, 2000]. Differentiating and setting equal to 0 gives

C ′(QA) = 0.14QA − 105 = 0,

yielding one critical point, Q∗A = 750. The critical value C∗ = C(750) = 122625 is the
minimum value on [0, 2000], as you can verify by comparing to the values at the endpoints.‡

We conclude that the firm should produce 750 units in facility A and 1250 units in facility
B to minimize their cost of production. �

This approach can be relatively simple, as in the previous example, and it can be a bit
more complicated. As an exercise, you should try the substitution method to solve the
constrained problem in Example 9. We can also use this approach in the case that the
objective function has three or more variables.

Example 4. A household’s utility function is given by

U(x, y, z) = 5 lnx+ 8 ln y + 12 ln z, (6)

where x, y and z are the monthly quantities of goods of types 1, 2 and 3, respectively, that
the family consumes in a month. The average price per unit of type 1 goods is p1 = $10.00;
the average price per unit of type 2 goods is P2 = $15.00; the average price per unit of type
3 goods is P3 = $30.00; and the household’s monthly disposable income (which it spends
entirely on these goods) is B = $3000.00.

How should the household allocate its budget to maximize its monthly utility?

‡In fact, this is the minimum value on (−∞,∞). Why?
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From the prices and income, we obtain the income constraint

10x+ 15y + 30z = 3000, (7)

since the amount on the left-hand side of the equation is the cost of consuming x, y and z
units of goods of types 1, 2 and 3, and this must be equal to the disposable income, on the
right.

Solving (7) for the variable x, we find that x = 300 − 1.5y − 3z, and substituting this
expression in the utility function gives a function of the two variables y and z, (which I’ll
denote with a lower case u, to indicate that the constraint has been used to substitute for
the variable x),

u(y, z) = 5 ln(300− 1.5y − 3z) + 8 ln y + 12 ln z.

We now want to find the maximum value of this function without any constraints, except
that the conditions x = 300− 1.5y − 3z > 0, y > 0 and z > 0 must be satisfied (why?),
which means that the points (y, z) we consider must lie in the triangle in the (y, z)-plane
bounded by the lines y = 0, z = 0 and y = 200− 2z.

The first order conditions are

uy = − 7.5

300− 1.5y − 3z
+

8

y
= 0

uz = − 15

300− 1.5y − 3z
+

12

z
= 0.

Putting the expressions in the two equations on common denominators gives the equations

− 7.5y

y(300− 1.5y − 3z)
+

8(300− 1.5y − 3z)

y(300− 1.5y − 3z)
=

2400− 19.5y − 24z

y(300− 1.5y − 3z)
= 0

− 15z

z(300− 1.5y − 3z)
+

12(300− 1.5y − 3z)

z(300− 1.5y − 3z)
=

3600− 18y − 51z

z(300− 1.5y − 3z)
= 0.

Finally, since the numerator of a simple ratio must be 0 for the ratio to equal 0, this last
pair of equations reduces to a simple pair of linear equations

19.5y + 24z = 2400

18y + 51z = 3600.

Solving the first equation for z gives z = 100− 19.5
24 y, and substituting this into the second

equation and solving for y gives y0 = 64. Plugging this back into the expression for z gives
z0 = 100− 19.5

24 y0 = 48. Thus we found one critical point, (y0, z0) = (64, 48).

To verify that the critical point we found yields the maximum value that we seek, we
need to check the second-order conditions. I.e., we need to check that D = uyyuzz−u2yz > 0
and uyy < 0 at the critical point (y0, z0) = (64, 48).

We have

uyy = −
(

11.25

(300− 1.5y − 3z)2
+

8

y2

)
,

uzz = −
(

45

(300− 1.5y − 3z)2
+

12

z2

)
and

uyz = −
(

22.5

(300− 1.5y − 3z)2

)
,
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and evaluating at the critical point gives

D(64, 48) = 0.000050863 > 0 and uyy(64, 48) = −0.005078125 < 0.

Thus u(64, 48) ≈ 100.197 is indeed the maximum value we seek.

Returning to the original 3-variable problem, we find that x0 = 300− 1.5y0 − 3z0 = 60,
and conclude that, subject to their income constraint, the household’s utility is maximized
when they consume 60 units of type 1 goods, 64 units of type 2 goods and 48 units of type
3 goods. �

3. Lagrange multipliers

The second approach for solving constrained optimization problems is based on consid-
erations from vector calculus, and is named for the mathematician Joseph Louis Lagrange.
This approach is more sophisticated, and as a consequence yields more information.

Suppose that we want to find the optimal value of the objective function f(x, y, z)
subject to the constraint g(x, y, z) = c. The method of Lagrange multipliers introduces a
new variable, traditionally denoted by the Greek letter λ (‘lambda’), and the new function

F (x, y, z, λ) = f(x, y, z)− λ ·
(
g(x, y, z)− c

)
, (8)

called the ‘Lagrangian’. The new variable λ is called the multiplier.§ The principle behind
the method is the following.

Under suitable conditions, the optimal value(s) of the objective function,
f(x, y, z), subject to the constraint, g(x, y, z) = c, is (are) obtained at the (x, y, z)-
components of stationary point(s) (x∗, y∗, z∗, λ∗) of the lagrangian F (x, y, z, λ).

The stationary points of the Lagrangian function are found by setting all of its first order
partial derivatives equal to 0 (as usual) and solving the resulting system of equations,

Fx(x, y, z, λ) = fx(x, y, z)− λ · gx(x, y, z) = 0,
Fy(x, y, z, λ) = fy(x, y, z)− λ · gy(x, y, z) = 0,
Fz(x, y, z, λ) = fz(x, y, z)− λ · gz(x, y, z) = 0,

and
Fλ(x, y, z, λ) = −(g(x, y, z)− c) = 0.

 (9)

Note that the fourth equation (Fλ = 0) in the system of equations above reproduces the
original constraint because

−(g(x, y, z)− c) = 0 ⇐⇒ g(x, y, z)− c = 0 ⇐⇒ g(x, y, z) = c.

Moreover, this implies that if (x∗, y∗, z∗, λ∗) is a critical point, then

F (x∗, y∗, z∗, λ∗) = f(x∗, y∗, z∗)

because g(x∗, y∗, z∗)− c = 0. In other words, the critical values of F (x, y, z, λ) are equal to
the corresponding values of f(x, y, z) at the (x, y, z)-coordinates of the critical points.

§The plural, ‘multipliers’, is used in the name of the method because in principle, there may be more than one
constraint. If there are k constraints, g1 = c1, g2 = c2, . . . , gk = ck, then k multipliers are introduced, and the
Lagrangian has the form F = f − λ1(g1 − c1)− λ2(g2 − c2)− · · · − λk(gk − ck).
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The first three equations in the system (9) can often be rewritten in a form that reveals
structural aspects of the model being studied,¶ and for this reason I refer to them as the
structural equations of the optimization problem. Another way of thinking of these equations
is as equilibrium equations for the problem being studied.

Example 5. First, let’s apply the method to a problem that we have already solved,
e.g., the utility maximization problem in Example 4.

The objective function is the utility U(x, y, z) = 5 lnx+ 8 ln y+ 12 ln z and the (income)
constraint is given by 10x + 15y + 30z = 3000. Putting these together as in (8), we find
that the Lagrangian function for this problem is

F (x, y, z, λ) = 5 lnx+ 8 ln y + 12 ln z − λ(10x+ 15y + 30z − 3000).

The structural equations in this case are

5

x
− 10λ = 0,

8

y
− 15λ = 0, and

12

z
− 30λ = 0,

and solving each of these equations for λ produces the following ‘triple’ equation:

λ =
1

2x
=

8

15y
=

2

5z
. (10)

Comparing the x-term to the y-term gives 15y = 16x which implies y = 16
15x. Likewise,

comparing the x-term to the z-term gives 5z = 4x which implies z = 4
5x. Finally, inserting

these expressions for y and z into the constraint gives

10x+ 15
(
16
15x
)

+ 30
(
4
5x
)

= 50x = 3000,

yielding one critical point: (x∗, y∗, z∗, λ∗) = (60, 64, 48, 1/120).

The first thing to note is that (x∗, y∗, z∗) = (60, 64, 48) is the same critical point that we
found using the substitution method, and which we know produces the maximum that we
seek (based on the analysis in Example 4). Second, the algebra was easier using the method
of Lagrange multipliers than using the method of substitution.

Finally, we have also produced a new piece of information, namely the critical value
of the multiplier, λ∗ = 1/120. As we will see, the critical value of the multiplier has an
important mathematical interpretation, which leads to important economic interpretations.
We’ll get to that when we study the envelope theorem. �

Example 6. Studying the utility maximization problem more generally (and more the-
oretically) leads to a better understanding of the multiplier. We can also draw economic
conclusions, and interpret the structural equations as equilibrium conditions for utility max-
imization.

Let’s denote the utility function by U(q1, q2, q3) , where the variables q1, q2 and q3 are
the quantities of goods of types 1, 2 and 3 that are consumed per unit time, respectively.
As before, each type of good has an average price, which I’ll denote here by p1, p2 and
p3 respectively, all measured in dollars, for concreteness’ sake. This leads to the income
constraint

p1 · q1 + p2 · q2 + p3 · q3 = Yd, (11)

where Yd is the consumer’s disposable income.

¶I.e., they describe some aspect of the (economic) theory behind the optimization problem.
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It follows that the Lagrangian for the utility maximization problem is

F (q1, q2, q3, λ) = U(q1, q2, q3)− λ(p1q1 + p2q2 + p3q3 − Yd),

and the structural equations may be written as

Uq1(q1, q2, q3) = λ p1

Uq2(q1, q2, q3) = λ p2

Uq3(q1, q2, q3) = λ p3.

Solving each of these equations for λ leads to the following triple equation

λ =
Uq1(q1, q2, q3)

p1
=
Uq2(q1, q2, q3)

p2
=
Uq3(q1, q2, q3)

p3
. (12)

The partial derivative Uq1 is the marginal utility of type 1 goods. I.e., it is the change
in utility due to the consumption of one additional unit of type 1 goods, assuming that the
consumption of the other goods does not change.

Dividing Uq1 by the price p1 gives the change in utility due to consumption of an addi-
tional dollar’s worth of type 1 goods. For example, if p1 = 3, then $1 buys ∆q1 = 1/3 of a
unit of type 1 goods, and the approximation formula tells us that

∆U ≈ Uq1 ·∆q1 =
Uq1
3

=
Uq1
p1
.

For this reason, the ratio Uq1/p1 is (sometimes) referred to as the marginal utility of a
dollar’s worth of type 1 goods.

The same observations are true for the ratios Uq2/p2 and Uq3/p3 as well, and the triple
equation (12) can be interpreted as an equilibrium condition:

At the point (q1, q2, q3) of maximum utility, the marginal utilities of a dollar’s
worth of each good are all equal to each other.

Equation (12) shows that at the point of maximum utility, the critical value of the
multiplier λ must be equal to this common value. In the context of utility maximization
the critical value of the Lagrange multiplier is (sometimes) called the marginal utility of
money, because if Yd increased by $1, then the consumer’s maximum utility will increase
by about λ∗, the critical value of the multiplier, regardless of how the additional dollar is
spent. �

4. Interpreting the Lagrange multiplier.

In the last example, we saw that the critical value of the multiplier λ has an interesting
and useful interpretation in the context of utility maximization. In fact, the critical value
of the multiplier always has an important interpretation. To see what it is, we rely on the
envelope theorem.

Suppose we want to optimize the objective function f(x, y, z) subject to the constraint
g(x, y, z) = φ. The Lagrangian, F (x, y, z, λ;φ) = f(x, y, z)− λ(g(x, y, z)− φ), is a function
of the four variables x, y, z and λ, and the constraining value φ, which is a parameter.

Recall that if (x∗, y∗, z∗, λ∗) is a critical point of the Lagrangian, then F ∗(x∗, y∗, z∗, λ∗)
is equal to f(x∗, y∗, z∗) = f∗, because the first order condition Fλ = 0 implies that the
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factor (g(x∗, y∗, z∗)− φ) = 0. Now, the envelope theorem states that

dF ∗

dφ
= Fφ(x∗, y∗, z∗, λ∗),

which means that
df∗

dφ
= Fφ(x∗, y∗, z∗, λ∗),

where f∗ is the optimal value of the objective function subject to the given constraint. But
Fφ = λ, because

F (x, y, z, λ;φ) = f(x, y, z)− λ(g(x, y, z)− φ) = f(x, y, z)− λg(x, y, z) + λφ,

and this implies that
df∗

dφ
= λ∗. (13)

In other words,

the critical value of the Lagrange multiplier λ∗ gives the rate of change of the
constrained optimum with respect to the constraint, and is therefore (approxi-
mately) equal to the change in the optimal value due to a one-unit change in the
constraint.

Example 7. In Example 6, the constraint is the disposable income Yd, and the objective
function is the utility, U . It follows from Equation (13) that

λ∗ =
dU∗

dYd
, (14)

where U∗ is the maximum utility given the current disposable income. If Yd were to increase
by 1 unit (e.g., $1), then the consumer’s maximum utility would increase by roughly λ∗.
This is the same conclusion we drew at the end of Example 6, but the relation λ∗ = dU∗/dYd
provides more information.

Specifically, using linear approximation we see that

∆U∗ ≈ dU∗

dYd
·∆Yd = λ∗ ·∆Yd, (15)

from which it follows that

∆Yd ≈
1

λ∗
·∆U∗.

In particular, if we want to increase our (maximum) utility by ∆U∗ = 1, it follows that
disposable income will have to increase by approximately 1/λ∗.

In other words, the reciprocal of the Lagrange multiplier is the (approximate) cost of
increasing utility by 1 unit. Because of this, 1/λ∗ is sometimes called the shadow price of
utility in this type of problem. �

5. Minimizing cost and maximizing output.

Two of the most basic optimization problems in economics are the problems of minimiz-
ing the cost of producing a certain number of units, and maximizing output, given a fixed
production budget. Both of these are constrained optimization problems.
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Throughout the following examples, I’ll assume that the critical points determined by
the first order conditions yield the constrained optima that we are seeking. This is certainly
true in the examples involving the Cobb-Douglas production functions.

Example 8. Suppose that a firm’s production function is Q = Q(K,L), where K and
L are the quantities of the firm’s capital and labor inputs, respectively, and Q is the firm’s
output. Further suppose that the prices per unit of capital and labor input are pK and pL,
respectively, so that the cost to the firm of using K units of capital input and L units of
labor input is given by C = pKK + pLL,. The optimization problem that we want to solve
in this example is minimizing the cost of producing q units.

The objective function here is the cost function and the constraint is given by the equa-
tion Q(K,L) = q, so the Lagrangian for this problem is

F (K,L, λ) = pKK + pLL− λ
(
Q(K,L)− q

)
.

The first order conditions for F lead to the following structural equations

pK = λQK(K,L) and pL = λQL(K,L),

and solving these equations for λ leads to the equation

λ =
pK

QK(K,L)
=

pL
QL(K,L)

. (16)

By considering reciprocals, we see that (16) is equivalent to

QK(K,L)

pK
=
QL(K,L)

pL
, (17)

which can be interpreted as an equilibrium condition for cost minimization, as follows.

The partial derivatives QK and QL are the marginal products of capital and labor,
respectively. Dividing each one by the price of the corresponding input gives the marginal
product of a dollar’s worth of that input. I.e., QK/pK is the (approximate) change in output
due to a $1 increase in capital spending, and QL/pL is likewise the (approximate) change
in output due to a $1 increase in spending on labor. Equation (17) says:

If the cost of producing q units is minimized at the point (K∗, L∗), then the
marginal product of a dollar of capital must be equal to the marginal product of
a dollar of labor at that point.

Returning to the multiplier, the envelope theorem says in this case that

λ∗ =
dC∗

dq
,

where λ∗ is the critical value of the multiplier and C∗ is the minimum cost of producing q
units. In other words λ∗ is the (approximate) cost of producing the (q + 1)st unit, so λ∗ is
the firm’s marginal cost. �

The dual problem to the one of minimizing the cost of producing a certain number of
units is that of maximizing output, given a fixed budget.†

†These are ‘dual’ optimization problems in the sense that one is obtained from the other by switching the roles of
constraint and objective functions.
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Example 9. A firm’s production function is given by the Cobb-Douglas function

Q = 36u1/2v1/3w1/4,

where u, v and w are the levels of the firm’s three inputs and Q is the firm’s output. The
price per unit of the three inputs are pu = $25.00, pv = $20.00 and pw = $10.00, respectively.

Find the levels of the three inputs that maximize the firm’s output, given that the firm’s
production budget is β = $78, 000.00

The objective function in this example is the output, and the constraint is given by the
budget and the prices:

25u+ 20v + 10w = 78000.

This means that the Lagrangian for this problem is

F (u, v, w, λ) = 36u1/2v1/3w1/4 − λ(25u+ 20v + 10w − 78000),

and the structural equations are

18u−1/2v1/3w1/4 = 25λ,

12u1/2v−2/3w1/4 = 20λ,

9u1/2v1/3w−3/4 = 10λ.

Solving each of these equations for λ gives the triple equation

(λ =)
18v1/3w1/4

25u1/2
=

3u1/2w1/4

5v2/3
=

9u1/2v1/3

10w3/4
.

Comparing the first and second expressions, canceling the common factor w1/4 and
clearing denominators (cross-multiplying) gives

90v = 75u =⇒ v =
5u

6
.

Similarly, comparing the first and third expressions, canceling the common factor v1/3 and
clearing denominators gives

180w = 225u =⇒ w =
5u

4
.

Next, substituting the boxed expressions for v and w into the constraint equation gives

25u+ 20
5u

6
+ 10

5u

4
= 78000 =⇒ 650u = 936000 =⇒ u∗ = 1440.

This means that v∗ = 1200, w∗ = 1800 and

λ∗ =
18(v∗)1/3(w∗)1/4

25(u∗)1/2
≈ 1.3133.

Thus, the critical point is (u∗, v∗, w∗, λ∗) = (1440, 1200, 1800, 1.3133), and the firm’s maxi-
mum output given their $78,000.00 budget is

Q∗ = 36(u∗)1/2(v∗)1/3(w∗)1/4 ≈ 94557.42.
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Question: By how much can the firm increase its output if their budget increases to
$80,000.00?

Answer: By the envelope theorem, dQ∗/dβ = λ∗, so by the approximation formula

∆Q∗ ≈ λ∗∆β = (1.3133) · 2000 = 2662.6. (18)

Note: If you repeat the optimization problem with β = 80000,‡ you will find that the new
critical point is (u∗, v∗, w∗, λ∗) ≈ (1476.92, 1230.77, 1846.15, 1.3161), and the new maximum
output is Q∗ = 97186.8. Thus, the actual value of ∆Q∗ is 97186.80 − 94557.42 = 2629.38.
The approximation in equation (18) is high by about 33 or 1.2%, which is not bad, consid-
ering the size of ∆β. �

Example 10. Let’s return to the problem of cost minimization, but specify that the
production function is a Cobb-Douglas function. Specifically, we want to minimize the
cost, C = pKK + pLL of producing q units, where the production function has the form
Q = AKαLβ. The point is to see how the partial elasticities α and β affect the firm’s
marginal cost function.

The first order conditions for optimization are the constraint

AKαLβ = q,

together with the structural equation (16), which for the Cobb-Douglas model is given
explicitly as

(λ =)
pK

αAKα−1Lβ
=

pL
βAKαLβ−1

,

which can be rewritten as

(λ =)
pKK

αAKαLβ
=

pLL

βAKαLβ
, (19)

because Kα−1 = Kα/K and Lβ−1 = Lβ/L.

After canceling the common factors AKαLβ from both denominators and solving the
resulting linear equation for L, the structural equation (19) reduces to

L =

(
β

α
· pK
pL

)
K. (20)

This gives us our first conclusion, even before finding the critical point. Namely, to minimize
cost in this model,§ the ratio of labor input to capital input must be equal to the constant
(β/α) · (pK/pL).

This leads to a second conclusion. The firm’s capital and labor expenditures, EK and
EL, are the amounts of money they spend on each input, and are given by

EK = pKK and EL = pLL.

Assuming that the firm acts to minimize their cost of production, so that the input levels
satisfy (20), we find that the ratio of labor to capital expenditure is given by

EL
EK

=
pLL

pKK
=

pL

(
β

α
· pK
pL

)
K

pKK
=
β

α
.

‡which I recommend, for practice’ sake.
§I.e., where output is a Cobb-Douglas function of the inputs and the prices of the inputs are fixed.
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I.e., assuming constant prices of inputs, the ratio of labor expenditure to capital expendi-
ture in the Cobb-Douglas model is equal to the ratio of labor elasticity of output to capital
elasticity of output.¶

Returning to the problem of actually finding the critical input levels, we substitute the
expression for L, above, into the output constraint AKαLβ = q, which gives

AKα

(
β

α
· pK
pL

)β
Kβ = q =⇒ A

(
β

α
· pK
pL

)β
Kα+β = q.

Solving the right-hand expression for K∗ and then using (20) to compute L∗, we find that
the cost-minimizing levels of capital and labor inputs are

K∗ = ΛKq
1/(α+β) and L∗ = ΛLq

1/(α+β), (21)

where the constants ΛK and ΛL are determined by the input elasticities, the prices of capital
and labor inputs and the constant A:

ΛK = A
− 1
α+β ·

(
α · pL
β · pK

) β
α+β

and ΛL =

(
β

α
· pK
pL

)
· ΛK = A

− 1
α+β ·

(
β · pK
α · pL

) α
α+β

.

Finally, using (19) to find the critical value of the multiplier, we see that

λ∗ =
pKK

∗

αA(K∗)α(L∗)β
=
pKΛKq

1/(α+β)

αq
= Λλq

1
α+β−1

, (22)

where

Λλ =
pKΛK
α

=

(
(pK/α)α(pL/β)β

A

) 1
α+β

.

As we saw in Example 8, λ∗ is essentially the firm’s marginal cost, so it follows from
Equation (22) that the sum of the elasticities (α+β) determines the nature of the marginal
cost function. Namely,

1. If α+ β < 1, then 1
α+β − 1 > 0, and λ∗ is an increasing function of the output q, and

therefore marginal cost is increasing.

2. If α + β > 1, then 1
α+β − 1 < 0, and λ∗ is a decreasing function of q, and therefore

marginal cost is decreasing.

3. If α + β = 1, then 1
α+β − 1 = 0, and λ∗ is constant, and therefore marginal cost is

constant and equal to Λλ.

Comments:

a. The conclusions above depend on the fairly restrictive assumption that the firm’s cost
is a linear function of the inputs, i.e., that the prices per unit of capital and labor input
are constant.

b. The constants ΛK , ΛL and Λλ have somewhat complicated forms, but the important
thing in this example is that they depend only on the prices, the elasticities and the
constant A, and not depend on the constraint q. In other words they don’t change with
the target output. �

¶Recall that in the Cobb-Douglas model, α and β are the capital and labor elasticities of output, respectively.
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6. Second order conditions for constrained optimization.

There are second derivative tests for constrained optimization problems as well. The
principle behind these tests is the same as it was before,‖ but the resulting formulas are
more complicated because of the constraint(s) and the multiplier(s). To illustrate, I describe
below the simplest case, namely the second derivative test for a constrained optimum in
two variables (with one constraint).

Let (x∗, y∗, λ∗) be a critical point of the Lagrangian, F (x, y, λ) = f(x, y)−λ(g(x, y)−c),
and let the discriminant be defined by

D(x, y, λ) = 2gx(x, y)gy(x, y)(fxy(x, y)− λgxy(x, y))

−
[
gx(x, y)2(fyy(x, y)− λgyy(x, y)) + gy(x, y)2(fxx(x, y)− λgxx(x, y))

]
.

Then:

(*) If D(x∗, y∗, λ∗) > 0, then f(x∗, y∗) is a local maximum value of z = f(x, y) subject
to the constraint g(x, y) = c.

(*) If D(x∗, y∗, λ∗) < 0, then f(x∗, y∗) is a local minimum value of z = f(x, y) subject
to the constraint g(x, y) = c.

Example 11. Suppose that a family’s disposable income is Yd, and they want to maxi-
mize the utility U(x, y) = a lnx+ b ln y of consuming x units of good A and y units of good
B, where a and b are positive parameters and pA and pB are the prices per unit of goods A
and B, respectively. In other words, we need to find the maximum value of U(x, y) subject
to the constraint g(x, y) = pAx+ pBy = Yd.

The Lagrangian for this problem is

F (x, y, λ) = a lnx+ b ln y − λ(pAx+ pBy − Yd),

and the structural equations are

Fx =
a

x
− λpA = 0

Fy =
b

y
− λpB = 0.

Solving these equations for λ gives

λ =
a

pAx
=

b

pBy
,

and solving the right-hand equation for y gives

y =
bpA
apB

x.

Substituting this into the constraint we find the critical x-value

pAx+ pB
bpA
apB

x = Yd =⇒ x∗ =
Yd
pA

(
a

a+ b

)
,

‖I.e., considering the quadratic Taylor polynomial of the Lagrangian function centered at the critical point. How-
ever, there are added considerations due to the constraint.
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from which we obtain the critical y and λ values,

y∗ =
Yd
pB

(
b

a+ b

)
and λ∗ =

a+ b

Yd
,

as you should check!

In this example, the constraining function is linear (g(x, y) = pAx + pBy) so the sec-
ond derivatives gxx, gyy and gxy in the definition of the discriminant above are all zero.
Furthermore, Uxy = 0 too (check!), so the discriminant simplifies considerably here:

D(x, y, λ) = 2gx(x, y)gy(x, y)(Uxy(x, y)− λgxy(x, y))

−
[
gx(x, y)2(Uyy(x, y)− λgyy(x, y)) + gy(x, y)2(Uxx(x, y)− λgxx(x, y))

]
= −

[
p2A

(
− b

y2

)
+ p2B

(
− a

x2

)]
=
p2Ab

y2
+
p2Ba

x2
.

Since a and b are assumed to be positive parameters, the discriminant is positive for all x
and y. In particular, we have

D(x∗, y∗, λ∗) > 0

so

U∗ = U(x∗, y∗) = a ln

(
Yd
pA

(
a

a+ b

))
+ b ln

(
Yd
pB

(
b

a+ b

))
is a local maximum value. Furthermore, since the discriminant is always positive (in this
example), this is the absolute maximum utility that the household can attain given its
income constraint.

13



Exercises

1. A household’s utility function is given by U(x, y, z) = 8 lnx + 5 ln y + 7 ln z, where x, y
and z are the quantities of goods of types A, B and C that the household consumes in
a month. The average prices per unit of these goods are pA = $10.00, pB = $6.00 and
pC = $8.00, respectively.

(a) Find the quantities of each type of good that the household should consume in a
month to maximize its utility, given that its monthly disposable income is $2400.00.
What is the max utility that the household achieves?

(b) By approximately how much does the household’s disposable income have to increase,
if they are to increase their utility by 2 units? Justify your answer.

2. A firm’s production function is given by Q = 32k3/4l1/4, where Q is monthly output
and k and l are the quantities of capital and labor input, respectively, used per month.
The average monthly cost per unit of capital is pk = $12,000 and the average monthly
cost per unit of labor is pl = $3,000.

Find the quantities of capital and labor input that minimize the cost of producing 20,000
units of output. What is the minimal cost? What is the firm’s marginal cost when cost
is minimized? Justify your answer.

3. Another firm has the production function given by Q = 20u0.3v0.2w0.5, where u, v and w
are the annual quantities of the inputs U , V and W that the firm uses in to produce its
output, and Q is the firm’s annual output. The price per unit of inputs U , V and W are
PU = 1000, PV = 2500 and PW = 4000, respectively, and the firm’s annual production
budget is B = $1, 000, 000.

Find the quantities of each input that maximize the firm’s output, subject to its budget
constraint. By approximately how much will the firm’s maximal output change, if its
annual budget increases to B1 = $1, 010, 000? Justify your answer.

4. In Example 10, verify that the household’s maximum utility is a linear function of the
log of its income, i.e.,

U∗ = α ln(Yd) + β.

What are the constants α and β?

14


