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This note covers the basics of (unconstrained) optimization, and attempts to explain things
like

• why critical points are critical, and

• why the second derivative test works.

The key definitions and facts are summarized in neat little boxes, (like this one).

1. Local extreme values and critical points.

1.1 Local extreme values.

The value z0 = f(x0, y0) is called a local minimum value of the function if there is a number
δ > 0 such that

f(x, y) ≥ f(x0, y0) (1)

for all points (x, y) satisfying |x − x0| < δ and |y − y0| < δ. Likewise, z1 = f(x1, y1) is a local
maximum value if

f(x, y) ≤ f(x1, y1) (2)

for all points (x, y) satisfying |x − x1| < δ and |y − y1| < δ, for some number δ > 0.† The local
maximum and minimum values of a function are also called local extreme values, when the
distinction between maximum and minimum is not important.

More generally, w̃ = f(x̃1, . . . , x̃n) is a local maximum (or minimum) value if and only if there
is some number δ > 0 such that

f(x1, . . . , xn) ≤ f(x̃1, . . . , x̃n) (or f(x1, . . . , xn) ≥ f(x̃1, . . . , x̃n), respectively)

for all points (x1, . . . , xn) satisfying |xj − x̃j | < δ, for j = 1, 2, . . . , n.

1.2 First order conditions.

By studying the first order Taylor approximation of the function z = f(x, y), we can identify the
points (x0, y0) where local extreme values might occur. Recall that the first order approximation
can be written

f(x, y)− f(x0, y0) ≈ fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0), (3)

where the approximation is accurate for all points (x, y) sufficiently close to (x0, y0), i.e., for all
points satisfying |x− x0| < δ and |y − y0| < δ for some positive number δ.‡

†The condition ‘|x − x1| < δ and |y − y1| < δ, for some number δ > 0’ is a more precise way of saying ‘sufficiently close to
(x1, y1)’.
‡For our purposes in this note, the precise value of δ is not important. The important thing is that δ exists.
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Suppose that fx(x0, y0) > 0, then by choosing y = y0 and x1 > x0, the approximation (3) tells
us that

f(x1, y0)− f(x0, y0) ≈ fx(x0, y0)(x1 − x0) > 0,

as long as x1 is sufficiently close to x0. This means that f(x0, y0) cannot possibly be a local
maximum value, since there are points arbitrarily close to (x0, y0) where the function takes larger
values.

Still assuming that fx(x0, y0) > 0 and staying with y = y0, but choosing x1 < x0, we see that

f(x1, y0)− f(x0, y0) ≈ fx(x0, y0)(x1 − x0) < 0,

as long as x1 is sufficiently close to x0. This implies that f(x0, y0) cannot possibly be a local
minimum value, since there are points arbitrarily close to (x0, y0) where the function takes smaller
values.

The preceding two paragraphs show that if fx(x0, y0) > 0, then f(x0, y0) is not a local extreme
value. An analogous line of reasoning shows that if fx(x0, y0) < 0, then f(x0, y0) is not a local
extreme value. Furthermore, there is nothing special about the variable x — if fy(x0, y0) 6= 0,
then the same reasoning shows that f(x0, y0) is not a local extreme value. All of this implies the
following basic fact:

if f(x0, y0) is a local extreme value, then fx(x0, y0) = 0 and fy(x0, y0) = 0.

These arguments work just as well for a function of 17 variables as a function of two variables,
so we can draw the following general conclusion.

Fact 1.

If f(x̃1, . . . , x̃n) is a local extreme value of the function f(x1, . . . , xn), then

fxj
(x̃1, . . . , x̃n) = 0 for each of the n variables x1, . . . , xn.

This fact leads to the the following definition.

Definition 1.

A point (x̃1, . . . , x̃n) is called a critical point (or a stationary point) of the function
f(x1, . . . , xn) if the system of n equations

fx1
(x̃1, . . . , x̃n) = 0

fx2
(x̃1, . . . , x̃n) = 0

...
fxn

(x̃1, . . . , x̃n) = 0

 (4)

are all satisfied. The value of the function at a critical point, f(x̃1, . . . , x̃n), is called a critical
value (or a stationary value).

The equations in (4) are called the first order conditions for f(x̃1, . . . , x̃n) to be a local
extreme value.
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The first order conditions must be satisfied if f(x̃1, . . . , x̃n) is a local extreme value, but they
do not guarantee that the critical value is a local extreme value.§

Example 1. The function f(x, y) = x2 − y2 has exactly one critical point, (0, 0), since the two
first order conditions for this function

fx = 2x = 0
fy = −2y = 0

have the unique solution x = 0 and y = 0, and the critical value is f(0, 0) = 0.

On the other hand, f(x, 0) = x2 > 0 for any x 6= 0, however small |x| is. This means that
f(0, 0) = 0 is not a local maximum, since the function assumes larger values at points that are
arbitrarily close to (0, 0).

Likewise, f(0, y) = −y2 < 0 for any y 6= 0, however small |y| is, which means that the function
takes smaller values at points arbitrarily close to (0, 0) as well. This means that f(0, 0) is not a
local minimum either.

Therefore, the critical value f(0, 0) is not a local extreme value in this example. �

Example 2. The first order conditions for the function g(x, y) = x2 + y2 − 2x+ 6y + 10 are

gx = 2x− 2 = 0
gy = 2y + 6 = 0.

The first equation has the solution x0 = 1 and the second equation has the solution y0 = −3. So
(x0, y0) = (1,−3) is the only critical point for this function, and the critical value is g(1,−3) = 0.

A little bit of algebraic manipulation (completing the square separately in x and y) shows that

g(x, y) = x2 + y2 − 2x+ 6y + 10 = (x− 1)2 + (y + 3)2.

This means that g(x, y) ≥ 0 for all (x, y), and that g(x, y) = 0 only at the critical point (1,−3). In
other words, if (x, y) 6= (1,−3), then

g(x, y) > 0 = g(1,−3),

so g(1,−3) is a local minimum value, and in fact that it is the global minimum value, since it is the
smallest value of the function over all. �

The main goal of the remainder of this note is to explain the second derivative test which is
described (for functions of two variables) in Section 17.6 of the textbook. The second derivative
test provides a way of deciding whether a critical value is a local maximum value, a local minimum
value or neither.

2. A necessary digression: quadratic forms.

The two examples in the previous section illustrate the fact that analyzing the critical values of
quadratic functions is relatively easy, requiring only basic algebra (i.e., completing the square) and
the fact that u2 > 0 for all u 6= 0.

To understand the second derivative test, we need only analyze the behavior of quadratic func-
tions that have no constant term and no linear terms. In the case of two variables, they look like
this

Q(u, v) = au2 + buv + cv2,

§Mathematicians call these necessary conditions, but they are not sufficient conditions.
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and in the case of three variables, they have the form

Q(u, v, w) = au2 + bv2 + cw2 + duv + euw + fvw.

This type of function is called a quadratic form.

As it turns out, what we need to know about quadratic forms is when such a form produces
only positive values, only negative values, or when it produces both positive and negative values.
This behavior is completely determined by the coefficients of the quadratic form, as I will illustrate
for forms in two and three variables. Moreover, we don’t need calculus to do this analysis.

2.1 The case of two variables.

Consider the form Q(u, v) = au2 + buv + cv2. If a 6= 0, then a short sequence of algebraic
manipulations shows that

Q(u, v) = a

(
u+

b

2a
v

)2

+

(
4ac− b2

4a

)
v2 = a

[(
u+

b

2a
v

)2

+D
( v

2a

)2
]
. (5)

The expression D = 4ac− b2 that appears in this expression is called the discriminant of the
form Q(u, v).

There are three possibilities to consider: D > 0, D < 0 and D = 0.

(a) If D > 0, then [(
u+

b

2a
v

)2

+D
( v

2a

)2
]
> 0

for all (u, v) 6= (0, 0). This means that the nature of Q(u, v) depends on a in this case.

i. If a > 0, then Q(u, v) > 0 for all (u, v) 6= (0, 0).

ii. If a < 0, then Q(u, v) < 0 for all (u, v) 6= (0, 0).

(b) If D < 0, then the expression S(u, v) =

[(
u+

b

2a
v

)2

+D
( v

2a

)2
]

takes both positive and

negative values. For example, if v = 0 and u 6= 0, then S(u, v) = u2 > 0. On the other hand,
if v 6= 0 and u = −bv/2a, then S(u, v) = D(v/2a)2 < 0. Since Q(u, v) = a · S(u, v), it follows
that in this case, Q(u, v) also takes both positive and negative values.

(c) If D = 0, then Q(u, v) = a (u+ bv/2a)2. In this case, if a > 0, then Q(u, v) ≥ 0 for all (u, v),
and if a < 0, then Q(u, v) ≤ 0 for all (u, v). At first glance, this case seems to be like case (a),
but there is a big difference.

If D = 0, then Q(u, v) = 0 for all points (u, v) satisfying u = −bv/2a.

In cases (a) and (b), Q(u, v) = 0 only if (u, v) = (0, 0). This difference makes the case D = 0
unhelpful in the second derivative test.

What happens if a = 0? First of all, the quadratic form simplifies to

Q(u, v) = buv + cv2,
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and second the discriminant simplifies to D = −b2. If b = 0 as well, then D = 0 and Q(u, v) = cv2,
and this reduces to a special case of (c), above, with the same conclusions.

If b 6= 0, then D < 0 and once again Q(u, v) takes both positive and negative values. I will leave
this for you to check.

The key points of the analysis above are summarized in the following fact.

Fact 2.

If Q(u, v) = au2 + buv + cv2 and D = 4ac− b2 6= 0, then

1. If D > 0 and a > 0, then Q(u, v) > 0 for all (u, v) 6= (0, 0).

2. If D > 0 and a < 0, then Q(u, v) < 0 for all (u, v) 6= (0, 0).

3. If D < 0, then Q(u, v) produces both positive and negative values.

2.2 The case of three variables.

As you can imagine, with three variables, there are more cases to consider in the algebraic
analysis. I’ll spare you the details, and merely summarize the main points in Fact 3.

Fact 3.

Let Q(u, v, w) = au2 + bv2 + cw2 + duv + euw + fvw, and set

D2 = 4ab− d2 and D3 = 4abc+ def − be2 − af2 − cd2.

1. If a > 0, D2 > 0 and D3 > 0, then Q(u, v, w) > 0 for all (u, v, w) 6= (0, 0, 0).

2. If a < 0, D2 > 0 and D3 < 0, then Q(u, v, w) < 0 for all (u, v, w) 6= (0, 0, 0).

3. If D2 < 0, or if D2 > 0 but a · D3 < 0, then Q(u, v, w) yields both positive and negative
values.

I won’t discuss the case of quadratic forms with more than three variables here, beyond saying
that Facts 2 and 3 generalize directly to give similar criteria.

3. The second order conditions.

We have already seen that for f(x̃1, . . . , x̃n) to be a local extreme value, it is necessary that
the point (x̃1, . . . , x̃n) be a critical point of the function. I.e., the point must satisfy the first order
conditions in (4). On the other hand, we also saw that the first order conditions, by themselves,
are not enough to guarantee that the critical value f(x̃1, . . . , x̃n) is a local extreme value.

In the case that f(x1, . . . , xn) is a quadratic function, it is relatively easy to analyze the nature of
the critical value by completing the square.¶ To extend this same analysis to general (nonquadratic)

¶Though what I mean by ‘easy’ may not jibe with what you mean by ’easy’, and in any case, easy or not, the analysis is
admittedly somewhat tedious.
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functions, we will look at the second order Taylor approximation, centered at the critical point
(x̃1, . . . , x̃n).

To keep the explanation relatively simple, I will focus on the case of two variables.‖ The problem
that we want to solve is the following:

Suppose that (x∗, y∗) is a critical point of the function f(x, y). How can we tell if f(x∗, y∗)
is bigger than or smaller than all the nearby values of f(x, y)?

In other words, we want a test that will tell us if f(x, y) < f(x∗, y∗) for all points (x, y) that are
sufficiently close to (x∗, y∗), if f(x, y) > f(x∗, y∗) for all points (x, y) that are sufficiently close to
(x∗, y∗), or if neither is true. To produce such a test, we will use the quadratic Taylor polynomial
for f(x, y), centered at the critical point (x∗, y∗).

If (x∗, y∗) is a critical point of the function f(x, y), then

fx(x∗, y∗) = fy(x
∗, y∗) = 0

and the quadratic Taylor polynomial for f , centered at (x∗, y∗) simplifies to

T2(x, y) = f(x∗, y∗) +
fxx(x∗, y∗)

2
(x− x∗)2 + fxy(x

∗, y∗)(x− x∗)(y − y∗) +
fyy(x

∗, y∗)

2
(y − y∗)2

because the linear terms fx(x∗, y∗)(x− x∗) and fy(x
∗, y∗)(y − y∗) both vanish!

Now, if (x, y) ≈ (x∗, y∗), then f(x, y) ≈ T2(x, y), so

f(x, y)− f(x∗, y∗) ≈ T2(x, y)− f(x∗, y∗),

and this means that

f(x, y)− f(x∗, y∗) ≈ fxx(x∗, y∗)

2
(x− x∗)2 + fxy(x

∗, y∗)(x− x∗)(y− y∗) +
fyy(x

∗, y∗)

2
(y− y∗)2. (6)

The expression on the righthand side of Equation (6) is a quadratic form, Qf (u, v), in the two
variables u = x− x∗ and v = y − y∗, with coefficients

a =
fxx(x∗, y∗)

2
, b = fxy(x

∗, y∗) and c =
fyy(x

∗, y∗)

2
,

that is

Qf (u, v) = au2 +buv+cv2 =
fxx(x∗, y∗)

2
(x−x∗)2 +fxy(x

∗, y∗)(x−x∗)(y−y∗)+
fyy(x

∗, y∗)

2
(y−y∗)2.

Furthermore, it follows from (6) that we have the following three cases.

Q1. If Qf (u, v)) > 0 for all points (u, v) 6= (0, 0), then

f(x, y) > f(x∗, y∗)

for all points (x, y) that are sufficiently close to (x∗, y∗)), in which case f∗ = f(x∗, y∗) is a
relative minimum value.

‖The explanation for functions of three or more variables is essentially the same, but the expressions get longer and longer,
and possibly more confusing.
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Q2. If Qf (u, v)) < 0 for all points (u, v) 6= (0, 0), then

f(x, y) < f(x∗, y∗)

for all points (x, y) that are sufficiently close to (x∗, y∗)), in which case f∗ = f(x∗, y∗) is a
relative maximum value.

Q3. If Qf (u, v) takes both positive and negative values, then there will be points (x, y) close to
(x∗, y∗) such that f(x, y) > f(x∗, y∗) and there will also be points (x, y) close to (x∗, y∗) such
that f(x, y) < f(x∗, y∗). In this case, f∗ = f(x∗, y∗) is neither a minimum nor a maximum
value.

Since the coefficients of Qf are given by the values of the second order derivatives of the function
f(x, y) at the critical point (x∗, y∗), these second derivative values determine which of the three
cases, above, occur (if any). To complete the analysis, we use Fact 2 and for this we need the
discriminant of Qf (u, v) (which depends on the critical point (x∗, y∗)):

Df (x∗, y∗) = 4ac− b2 = 4

(
fxx(x∗, y∗)

2

)(
fyy(x

∗, y∗)

2

)
− fxy(x∗, y∗)2

= fxx(x∗, y∗)fyy(x
∗, y∗)− fxy(x∗, y∗)2

Fact 4.

Suppose that (x∗, y∗) satisfies the first order conditions fx(x∗, y∗) = 0 and fy(x
∗, y∗) = 0, then:

1. If Df (x∗, y∗) > 0 and fxx(x∗, y∗) > 0, then f∗ = f(x∗, y∗) is a local minimum value.

2. If Df (x∗, y∗) > 0 and fxx(x∗, y∗) < 0, then f∗ = f(x∗, y∗) is a local maximum value.

3. If Df (x∗, y∗) < 0, then f∗ = f(x∗, y∗) is neither a local minimum value nor a local maxi-
mum value.

The conditions in 1. and 2. are called the second order conditions for a local minimum value
or a local maximum value, respectively, at (x∗, y∗).

3.1 Three variables

In the case of a critical point (x∗, y∗, z∗) of a function of three variables, g(x, y, z), Taylor’s
approximation, centered at (x∗, y∗, z∗) reduces to

g(x, y, z)− g(x∗, y∗, z∗) ≈ a(x− x∗)2 + b(y − y∗)2 + c(z − z∗)2

+ d(x− x∗)(y − y∗) + e(x− x∗)(z − z∗) + f(y − y∗)(z − z∗),

where

a =
gxx(x∗, y∗, z∗)

2
, b =

gyy(x
∗, y∗, z∗)

2
and c =

gzz(x
∗, y∗, z∗)

2
,

and
d = gxy(x

∗, y∗, z∗), e = gxz(x
∗, y∗, z∗) and f = gyz(x

∗, y∗, z∗),

as you can check.
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This means that

g(x, y, z)− g(x∗, y∗, z∗) ≈ Qg(u, v, w) = au2 + bv2 + cw2 + duv + euw + fvw,

where u = (x− x∗), v = (y − y∗) and w = (z − z∗).
The reasoning we employed in the two variable case is just as valid in this one, namely

Q1. If Qg(u, v, w) > 0 for all points (u, v, w) 6= (0, 0, 0), then

g(x, y, z) > g(x∗, y∗, z∗)

for all points (x, y, z) that are sufficiently close to (x∗, y∗, z∗), in which case g∗ = g(x∗, y∗, z∗)
is a relative minimum value.

Q2. If Qg(u, v, w) < 0 for all points (u, v, w) 6= (0, 0, 0), then

g(x, y, z) < g(x∗, y∗, z∗)

for all points (x, y, z) that are sufficiently close to (x∗, y∗, z∗), in which case g∗ = g(x∗, y∗, z∗)
is a relative maximum value.

Q3. If Qg(u, v, w) takes both positive and negative values, then there will be points (x, y, z) close
to (x∗, y∗, z∗) such that g(x, y, z) > g(x∗, y∗, z∗) and there will also be points (x, y, z) close
to (x∗, y∗, z∗) such that g(x, y, z) < g(x∗, y∗, z∗). In this case g∗ = g(x∗, y∗, z∗) is neither a
relative minimum value nor a relative maximum value.

Motivated by these observations and Fact 3, we form the discriminants

D2(x, y, z) = gxx(x, y, z)gyy(x, y, z)− gxy(x, y, z)2

and

D3(x, y, z) = gxx(x, y, z)gyy(x, y, z)gzz(x, y, z) + 2gxy(x, y, z)gxz(x, y, z)gyz(x, y, z)

− gxx(x, y, z)gyz(x, y, z)
2 − gyy(x, y, z)gxz(x, y, z)2 − gzz(x, y, z)gxy(x, y, z)2.

We can now state the second derivative test for functions of three variables.

Fact 5.

Suppose that (x∗, y∗, z∗) satisfies the first order conditions

gx(x∗, y∗, z∗) = 0, gy(x
∗, y∗, z∗) = 0 and gz(x

∗, y∗, z∗) = 0.

Then:

1. If D3(x∗, y∗, z∗) > 0, D2(x∗, y∗, z∗) > 0 and gxx(x∗, y∗, z∗) > 0, then g∗ = g(x∗, y∗, z∗) is a
local minimum value.

2. If D3(x∗, y∗, z∗) < 0, D2(x∗, y∗, z∗) > 0 and gxx(x∗, y∗, z∗) < 0, then g∗ = g(x∗, y∗, z∗) is a
local maximum value.

3. If D2(x∗, y∗, z∗) < 0, or if D2(x∗, y∗, z∗) > 0 but D3(x∗, y∗, z∗) · gxx(x∗, y∗, z∗) < 0, then
g(x∗, y∗, z∗) is neither a local minimum value nor a local maximum value.
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4. Examples

Example 3. Let f(x, y) = 5x3 − 4xy + y2 + x+ 2. The first order conditions are

fx = 15x2 − 4y + 1 = 0

fy = −4x+ 2y = 0.

The condition fy = 0 implies that y = 2x, and substituting this into the condition fx = 0 gives

15x2 − 8x+ 1 = 0 =⇒ x =
8±
√

64− 60

30
=⇒ x =

1

3
or x = −1

5
.

This means that the critical points are (x1, y1) = (1/3, 2/3) and (x2, y2) = (−1/5,−2/5).

The second derivatives of f are fxx = 30x, fyy = 2 and fxy = −4, so the discriminant is

Df (x, y) = 60x− 16.

At the critical point (x1, y1) = (1/3, 2/3), we have

• Df (1/3, 2/3) = 20− 16 = 4 > 0 and

• fxx(1/3, 2/3) = 10 > 0,

so f(1/3, 2/3) = 56/27 is a relative minimum value.

At the critical point (x2, y2) = (−1/5,−2/5), we have

• Df (−1/5,−2/5) = −12− 16 = −28 < 0,

so f(−1/5,−2/5) = 1.6 is neither a minimum value nor a maximum value.

Example 4. For quadratic functions, the second derivative test is not strictly necessary,∗∗ but
it can save time. For example, let

g(x, y, z) = 2x2 − 4xy + 5y2 − 2yz + z2 − 2x− 4y + 6.

The first order conditions are

gx = 0 =⇒ 4x− 4y − 2 = 0
gy = 0 =⇒ −4x+ 10y − 2z − 4 = 0
gz = 0 =⇒ −2y + 2z = 0

The condition gz = 0 implies that z = y, and substituting this into the equation gy = 0 gives

−4x+ 10y − 2y − 4 = 0 =⇒ 8y = 4x+ 4 =⇒ y =
x+ 1

2
.

Substituting this into the equation gx = 0 gives

4x− 4(x+ 1)

2
− 2 = 0 =⇒ 2x = 4 =⇒ x∗ = 2,

which means that

z∗ = y∗ =
x∗ + 1

2
=

3

2
.

∗∗Because we can ‘complete the square’ in the different variables.
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The second derivatives of g(x, y, z) are

gxx = 4, gxy = −4, gxz = 0, gyy = 10, gyz = −2 and gzz = 2,

so the discriminants are

D2(x, y, z) = 40− 16 = 24 and D3(x, y, z) = 80 + 0− 16− 0− 32 = 32.

Since D3 > 0, D2 > 0 and gxx > 0, it follows that

g∗ = g(2, 3/2, 3/2) =
13

4

is the minimum value of this function.
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