Study Guide 9

Solutions

1. A monopolistic firm sells one product in two markets, A and B. The daily demand equations for the firm's product in these markets are given by

$$
Q_{A}=100-0.4 P_{A} \quad \text { and } \quad Q_{B}=120-0.5 P_{B}
$$

where Q_{A} and Q_{B} are the demands and P_{A} and P_{B} are the prices for the firm's product in markets A and B, respectively. The firm's constant marginal cost is $\$ 40$ and the its daily fixed cost is $\$ 2500$.
a. Find the prices that the firm should charge in each market to maximize its daily profit. Use the second derivative test to verify that the prices you found yield the absolute maximum profit.

Solution: The firm's total daily output is $Q_{A}+Q_{B}$, so the firm's daily cost is

$$
C=40\left(Q_{A}+Q_{B}\right)+2500
$$

The firm's revenue from markets A and B is $R_{A}=P_{A} Q_{A}$ and $R_{B}=P_{B} Q_{B}$. The firm's profit function is

$$
\begin{aligned}
\Pi & =P_{A} Q_{A}+P_{B} Q_{B}-C \\
& =P_{A}\left(100-0.4 P_{A}\right)+P_{B}\left(120-0.5 P_{B}\right)-\left[40\left(100-0.4 P_{A}+120-0.5 P_{B}\right)+2500\right] \\
& =-0.4 P_{A}^{2}-0.5 P_{B}^{2}+116 P_{A}+140 P_{B}-11300 .
\end{aligned}
$$

The first order conditions for an optimum value give

$$
\begin{aligned}
& \Pi_{P_{A}}=0 \Longrightarrow-0.8 P_{A}+116=0 \Longrightarrow P_{A}^{*}=145 \\
& \Pi_{P_{B}}=0 \Longrightarrow-P_{B}+140=0 \Longrightarrow P_{B}^{*}=140
\end{aligned}
$$

The second order conditions for a maximum are

$$
\Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right) \cdot \Pi_{P_{B} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)-\left(\Pi_{P_{A} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)\right)^{2}>0 \text { and } \Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right)<0 .
$$

In this case we have $\Pi_{P_{A} P_{A}}=-0.8<0$ and

$$
\Pi_{P_{A} P_{A}}\left(P_{A}^{*}, P_{B}^{*}\right) \cdot \Pi_{P_{B} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)-\left(\Pi_{P_{A} P_{B}}\left(P_{A}^{*}, P_{B}^{*}\right)\right)^{2}=0.8>0
$$

for all $\left(P_{A}, P_{B}\right)$, so that the second order conditions are satisfied, and because the conditions hold everywhere, the critical value of profit

$$
\Pi^{*}=\Pi\left(P_{A}^{*}, P_{B}^{*}\right)=6910
$$

is the absolute maximum daily profit.
To summarize: the firm's profit is maximized when $P_{A}^{*}=145$ and $P_{B}^{*}=140$, at which point the daily demands are

$$
Q_{A}^{*}=100-0.4 P_{A}^{*}=42 \quad \text { and } \quad Q_{B}^{*}=120-0.5 P_{B}^{*}=50
$$

and the maximum profit is $\Pi^{*}=6910$.
b. Use the envelope theorem (and linear approximation) to estimate the change in the Firm's max profit if the marginal cost of their product increases to $\$ 40.75$.

Solution: If we denote the marginal cost by μ, then the profit function can be written as

$$
\Pi=P_{A} Q_{A}+P_{B} Q_{B}-\mu \cdot \overbrace{\left(Q_{A}+Q_{B}\right)}^{\text {total daily ouptut }}-2500 .
$$

According to the envelope theorem

$$
\frac{d \Pi^{*}}{d \mu}=\left.\frac{d \Pi}{d \mu}\right|_{\substack{P_{A}=P_{A}^{*} \\ P_{B}=P_{B}^{*}}}=-\left.\left(Q_{A}+Q_{B}\right)\right|_{\substack{P_{A}=P_{A}^{*} \\ P_{B}=P_{B}^{A}}}=-\left(Q_{A}^{*}+Q_{B}^{*}\right)=-92 .
$$

Now, using linear approximation, we find that

$$
\Delta \Pi^{*} \approx \frac{d \Pi^{*}}{d \mu} \cdot \Delta \mu=-92 \cdot(0.75)=-69
$$

I.e., if the firm's marginal cost increases by $\$ 0.75$, then the max daily profit will decrease by about \$69.00.
2. Jack's (gustatory) utility function is

$$
U(x, y, z)=5 \ln x+7 \ln y+18 \ln z
$$

where x is the number of fast-food meals Jack consumes in a month; y is the number of 'diner' meals he consumes in a month; and z is the number of 'fancy restaurant' meals he consumes in a month.

The average price of a fast-food meal is $p_{x}=\$ 4.00$; the average price of a 'diner' meal is $p_{y}=\$ 8.00$; and the average price of a 'fancy restaurant' meal is $p_{z}=\$ 30.00$.
a. How many meals of each type should Jack consumer per month to maximize his utility, if his monthly budget for these meals is $\beta=\$ 1200.00$?

Solution: The objective function is the utility $U(x, y, z)=5 \ln x+7 \ln y+18 \ln z$, and the constraint is the budget (or income) constraint we obtain from the prices and the budget:

$$
x p_{x}+y p_{y}+z p_{z}=\beta \Longrightarrow 4 x+8 y+30 z=1200
$$

Lagrangian: $F(x, y, z, \lambda)=5 \ln x+7 \ln y+18 \ln z-\lambda(4 x+8 y+30 z-1200)$.

'Structural' equations:

$$
\begin{aligned}
& F_{x}=\frac{5}{x}-4 \lambda=0 \\
& F_{y}=\frac{7}{y}-8 \lambda=0 \\
& F_{z}=\frac{18}{z}-30 \lambda=0 .
\end{aligned}
$$

Solving these equations for λ gives the triple equation

$$
\lambda=\quad \frac{5}{4 x}=\frac{7}{8 y}=\frac{3}{5 z} .
$$

Comparing the x-term and the y-term and clearing denominators gives

$$
\frac{5}{4 x}=\frac{7}{8 y} \Longrightarrow 40 y=28 x \Longrightarrow y=\frac{7 x}{10}
$$

Comparing the x-term and the z-term and clearing denominators gives

$$
\frac{5}{4 x}=\frac{3}{5 z} \Longrightarrow 25 z=12 x \Longrightarrow z=\frac{12 x}{25} .
$$

Substituting the expressions for y and z that we found into the budget constraint $\left(F_{\lambda}=0\right)$ gives

$$
4 x+8\left(\frac{7 x}{10}\right)+30\left(\frac{12 x}{25}\right)=1200 \Longrightarrow 1200 x=60000 \Longrightarrow x^{*}=50, y^{*}=35, z^{*}=24
$$

Thus, Jack maximizes his utility by consuming 50 fast food meals, 35 diner meals and 24 'fancy' restaurant meals in a month, resulting in a max utility of

$$
U^{*}=U\left(x^{*}, y^{*}, z^{*}\right)=U(50,35,24) \approx 101.652
$$

b. By approximately how much will Jack's utility increase if his budget increases by $\$ 50.00$? Explain your answer.

Solution: Since the utility function and the prices of meals are not changing, the maximum utility, U^{*}, is a function of the budget, β. I.e., increasing the budget increases U^{*} and decreasing the budget decreases U^{*}.
Now, observe that at the critical point $\left(x^{*}, y^{*}, z^{*}\right)$

$$
F^{*}=F\left(x^{*}, y^{*}, z^{*}, \lambda ; \beta\right)=U\left(x^{*}, y^{*}, z^{*}\right)-\lambda \overbrace{\left(4 x^{*}+8 y^{*}+30 z^{*}-1200\right)}^{=0}=U\left(x^{*}, y^{*}, z^{*}\right)=U^{*}
$$

which means that

$$
\frac{d U^{*}}{d \beta}=\frac{d F^{*}}{d \beta}
$$

Next, the envelope theorem applied to the Lagrangian function $F(x, y, z, \lambda ; \beta)$ tells us that

$$
\frac{d U^{*}}{d \beta}=\frac{d F^{*}}{d \beta}=\left.\frac{d F}{d \beta}\right|_{\substack{x=x^{*} \\ y=y^{*} \\ z=z^{*} \\ \lambda=\lambda^{*}}}=\lambda^{*},
$$

where λ^{*} is the critical value of the multiplier λ. In this case,

$$
\lambda^{*}=\frac{5}{4 x^{*}}=\frac{5}{200}=0.025
$$

Finally, we use linear approximation:

$$
\Delta U^{*} \approx \frac{d U^{*}}{d \beta} \cdot \Delta \beta=\lambda^{*} \cdot \Delta \beta=0.025 \cdot 50=1.25
$$

In other words, if Jack's food budget increases by $\$ 50.00$, then his max utility will increase by approximately 1.25.
3. A firm's productions function is given by

$$
Q=10 K^{0.4} L^{0.7},
$$

where Q is the firm's annual output, K is the annual capital input, and L is the annual labor input. The cost per unit of capital is $\$ 1000$, and the cost per unit of labor is $\$ 4000$.
a. Find the levels of labor and capital inputs that minimize the cost of producing an output of $Q=20,000$ units. What is the minimum cost?

Solution: The firm's cost is the cost of using K units of capital and L units of labor, i.e., the objective function here is

$$
C(K, L)=1000 K+4000 L
$$

The constraint in this case is the output target

$$
Q=20,000 \Longrightarrow 10 K^{0.4} L^{0.7}=20000
$$

so the Lagrangian is

$$
F(K, L, \lambda)=1000 K+4000 L-\lambda\left(10 K^{0.4} L^{0.7}-20000\right) .
$$

The first-order equations are

$$
\begin{aligned}
F_{K} & =0 & \Longrightarrow & 1000-4 \lambda K^{-0.6} L^{0.7}
\end{aligned}=0
$$

Solving the first two equations for λ gives

$$
\lambda=\frac{1000}{4 K^{-0.6} L^{0.7}}=\frac{4000}{7 K^{0.4} L^{-0.3}} \Longrightarrow 250 \frac{K^{0.6}}{L^{0.7}}=\frac{4000}{7} \cdot \frac{L^{0.3}}{K^{0.4}}
$$

Next, clear denominators in the equation on the right and solve for K in terms of L :

$$
1750 K=4000 L \Longrightarrow K=\frac{16}{7} L
$$

Finally, substitute for K in the equation $F_{\lambda}=0$ (the constraint), and solve for L :

$$
10 K^{0.4} L^{0.7}=20000 \Longrightarrow \overbrace{10\left(\frac{16}{7} L\right)^{0.4} \cdot L^{0.7}=20000}^{(*)} \Longrightarrow L^{1.1}=\frac{2000}{(16 / 7)^{0.4}}
$$

$$
\Longrightarrow L=\left(\frac{2000}{(16 / 7)^{0.4}}\right)^{1 / 1.1} \Longrightarrow L^{*} \approx 741.964
$$

Conclusion: Cost is minimized when $L^{*} \approx 741.964$ and $K^{*}=\frac{16}{7} L^{*} \approx 1695.918$. The minimum cost is

$$
C^{*}=\$ 1000 K^{*}+\$ 4000 L^{*} \approx \$ 1,695,918+\$ 2,967,856=\$ 4,663,774
$$

b. Find the levels of labor and capital inputs that minimize the cost of producing an output of $Q=q$ units and find the minimum cost. Express your answer in terms of q.

Solution: There is no need to start over from the beginning. The only difference between this and a. is that the target output changes from 20000 to q. This means that we can skip directly to the equation where 20000 makes its first appearance, namely the equation marked with a $\left(^{*}\right)$ above, and replace the 20000 that appears there by q :

$$
10\left(\frac{16}{7} L\right)^{0.4} \cdot L^{0.7}=q
$$

Now we continue as before to solve for L, then K and finally, C. First L :

$$
10\left(\frac{16}{7} L\right)^{0.4} \cdot L^{0.7}=q \Longrightarrow L^{1.1}=\frac{q}{10(16 / 7)^{0.4}} \Longrightarrow L^{*}(q)=\frac{q^{10 / 11}}{10^{10 / 11}(16 / 7)^{4 / 11}}=\alpha \cdot q^{10 / 11}
$$

where

$$
\alpha=\left(\frac{7}{16}\right)^{4 / 11} 10^{-10 / 11} \approx 0.0913 \quad\left(\text { and } \frac{10}{11}=\frac{1}{1.1} \text { and } \frac{4}{11}=\frac{4}{10} \cdot \frac{10}{11}\right)
$$

Next,

$$
K^{*}(q)=\frac{16}{7} L^{*}(q)=\beta \cdot q^{10 / 11}
$$

where

$$
\beta=\frac{16}{7} \alpha \approx 0.2086
$$

Finally, the (minimum) cost of producing q units is

$$
C^{*}(q)=1000 K^{*}(q)+4000 L^{*}(q)=(1000 \beta+4000 \alpha) q^{10 / 11} \approx 573.73 q^{10 / 11}
$$

4. The production function for ACME Widgets is

$$
Q=2 k^{2}+k l+5 l^{2}
$$

where k and l are the numbers of units of capital and labor input, respectively, and Q is their output, measured in 1000s of widgets. The price per unit of capital input is $p_{k}=\$ 1000$ and the price per unit of labor input is $p_{l}=\$ 2500$.
a. How many units of capital and labor input should ACME use to minimize the cost of producing 65000 widgets? What is the average cost per widget?

Solution: Since Q is measured in 1000s of widgets, the constraint here is

$$
2 k^{2}+k l+5 l^{2}=65
$$

and the Lagrangian for this problem is

$$
F(k, l, \lambda)=1000 k+2500 l-\lambda\left(2 k^{2}+k l+5 l^{2}-65\right) .
$$

The first order conditions are

$$
\begin{aligned}
& F_{k}=0 \\
& F_{l}=0 \Longrightarrow \quad 1000-\lambda(4 k+l)=0 \\
& F_{\lambda}=0 \Longrightarrow \quad 2500-\lambda(k+10 l)=0 \\
& 2 k^{2}+k l+5 l^{2}=65
\end{aligned}
$$

Solving the first two equations for λ gives

$$
\lambda=\frac{1000}{4 k+l}=\frac{2500}{k+10 l} .
$$

Dividing by 500 and clearing denominators on the right we find that

$$
2 k+20 l=20 k+5 l \Longrightarrow 15 l=18 k \Longrightarrow l=\frac{6 k}{5}
$$

Substituting for l in the constraint we have

$$
2 k^{2}+k \cdot\left(\frac{6 k}{5}\right)+5\left(\frac{6 k}{5}\right)^{2}=65 \Longrightarrow \frac{52 k^{2}}{5}=65 \Longrightarrow k^{2}=6.25
$$

Since capital input must be positive, the cost-minimizing levels of capital and labor input for producing 65000 widgets are $k^{*}=2.5$ and $l^{*}=3$. It follows that the (minimum) cost of producing 65000 widgets is $c^{*}=1000 \cdot 2.5+2500 \cdot 3=\$ 10000$, and the average cost per widget is

$$
\bar{c}^{*}=\frac{10000}{65000} \approx \$ 0.154
$$

b. By approximately how much will ACME's cost rise if they raise their output from 65000 widgets to 65500 widgets? Justify your answer.
Solution: Linear approximation tells us that $\Delta c^{*} \approx \frac{d c^{*}}{d Q} \cdot \Delta Q$, and by the envelope theorem, we have $d c^{*} / d Q=\lambda^{*}$, the critical value of the multiplier. In this problem we have

$$
\lambda^{*}=\frac{1000}{4 k^{*}+l^{*}}=\frac{1000}{13}
$$

Also, if output increases by 500 widgets, then $\Delta Q=0.5$. Thus we have

$$
\Delta c^{*} \approx \frac{d c^{*}}{d Q} \cdot \Delta Q=\lambda^{*} \cdot \Delta Q=\frac{500}{13} \approx 38.46
$$

c. By approximately how much will ACME's minimum cost increase (from part a.) if the cost per unit of capital increases to $\$ 1100$? Use the envelope theorem and linear approximation. Solution: First observe that similarly to problem 3b., if we denote the price of capital by p_{k}, then

$$
\frac{d c^{*}}{d p_{k}}=\frac{d F^{*}}{d p_{k}}
$$

where $F^{*}=F\left(k^{*}, l^{*}, \lambda^{*} ; p_{k}\right)$ and

$$
F=F\left(k, l, \lambda ; p_{k}\right)=p_{k} k+2500 l-\lambda\left(2 k^{2}+k l+5 l^{2}-65\right) .
$$

Now use the envelope theorem to find $d F^{*} / d p_{k}$:

$$
\frac{d c^{*}}{d p_{k}}=\frac{d F^{*}}{d p_{k}}=\left.\frac{d F}{d p_{k}}\right|_{\substack{k=k^{*} \\ l=l^{*} \\ \lambda=\lambda^{*}}}=\left.k\right|_{\substack{k=b^{*} \\ l=l^{*} \\ \lambda=\lambda^{*}}}=k^{*}=2.5 .
$$

Finally, use this and linear approximation to find that

$$
\Delta c^{*} \approx \frac{d c^{*}}{d p_{k}} \cdot \Delta p_{k}=2.5 \cdot 100=250
$$

I.e., if the price per unit of capital increases by $\$ 100$, then the cost will increase by about $\$ 250$.
5. The annual output for a luxury hotel chain is given by $Q=30 K^{2 / 5} L^{1 / 2} R^{1 / 4}$, where K, L and R are the capital, labor and real estate inputs, all measured in $\$ 1,000,000 \mathrm{~s}$, and Q is the average number of rooms rented per day.
The hotel chain's annual budget is $B=\$ 69$ million.
a. How should they allocate this budget to the three inputs in order to maximize their annual output? What is the maximum output?

Solution: We want to maximize the output, $Q=30 K^{2 / 5} L^{1 / 2} R^{1 / 4}$, subject to the budget constraint $K+L+R=69$, since the inputs are all being measured in millions of dollars. The Lagrangian for this problem is

$$
F(K, L, R, \lambda)=30 K^{2 / 5} L^{1 / 2} R^{1 / 4}-\lambda(K+L+R-69),
$$

and the first order conditions are

$$
\begin{aligned}
F_{K}=0 & \Longrightarrow 12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=\lambda, \\
F_{L}=0 & \Longrightarrow 15 K^{2 / 5} L^{-1 / 2} R^{1 / 4}=\lambda, \\
F_{R}=0 & \Longrightarrow 7.5 K^{2 / 5} L^{1 / 2} R^{-3 / 4}=\lambda, \\
F_{\lambda}=0 & \Longrightarrow K+L+R=69 .
\end{aligned}
$$

The first two equations imply that

$$
12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=15 K^{2 / 5} L^{-1 / 2} R^{1 / 4} \Longrightarrow \frac{12 L^{1 / 2}}{K^{3 / 5}}=\frac{15 K^{2 / 5}}{L^{1 / 2}}
$$

after canceling the common factor of $R^{1 / 4}$. Clearing denominators gives

$$
12 L=15 K \Longrightarrow L=1.25 K
$$

Likewise, comparing the first and third equations implies that

$$
12 K^{-3 / 5} L^{1 / 2} R^{1 / 4}=7.5 K^{2 / 5} L^{1 / 2} R^{-3 / 4} \Longrightarrow \frac{12 R^{1 / 4}}{K^{3 / 5}}=\frac{7.5 K^{2 / 5}}{R^{3 / 4}}
$$

and clearing denominators gives

$$
12 R=7.5 \mathrm{~K} \Longrightarrow \quad R=0.625 \mathrm{~K} .
$$

Substituting for R and L in the fourth equation (the constraint) gives

$$
K+1.25 K+0.625 K=69 \Longrightarrow 2.875 K=69
$$

Thus, the critical values for the inputs are

$$
K^{*}=\frac{69}{2.875}=24, \quad L^{*}=1.25 K^{*}=30 \quad \text { and } \quad R^{*}=0.625 K^{*}=15
$$

and the hotel chain's maximum output is

$$
Q^{*}=Q(24,30,15) \approx 1152.894
$$

b. What is the critical value of the multiplier when output is maximized?

Solution: When output is maximized, the critical value of λ is

$$
\lambda^{*}=12\left(K^{*}\right)^{-3 / 5}\left(L^{*}\right)^{1 / 2}\left(R^{*}\right)^{1 / 4} \approx 19.215
$$

c. Use your answer to b. to compute the approximate change in the firm's maximum output if their annual budget increases by $\$ 500,000$? Explain your answer.

Solution: As in problem 3b., it follows from the envelope theorem that

$$
\frac{d Q^{*}}{d B}=\lambda^{*}
$$

where B is the budget. It follows that

$$
\Delta Q^{*} \approx \lambda^{*} \cdot \Delta B \approx 19.215 \cdot 0.5 \approx 9.607
$$

since we measure the budget in the same units (millions of dollars) as the inputs, so an increase of $\$ 500,000$, means that $\Delta B=0.5$.

