Linear approximation and higher order partial derivatives

1. The monthly cost function for ACME Widgets is

$$
C=0.02 Q_{A}^{2}+0.01 Q_{A} Q_{B}+0.03 Q_{B}^{2}+35 Q_{A}+28 Q_{B}+5000
$$

where Q_{A} and Q_{B} are the monthly outputs of type A widgets and type B widgets, respectively, measured in 100s of widgets. The cost is measured in dollars.
a. Compute the marginal cost of type A widgets and the marginal cost of type B widgets, if the monthly outputs are 25000 type A widgets and 36000 type B widgets.
b. Suppose that production of type A widgets is held fixed at 25000 , and production of type B widgets is increased from 36000 to 36050 . Use your answer to part a. to estimate the change in cost to the firm.
c. Suppose that production of type A widgets is increased from 25000 to 25060 , and production of type B widgets is increased from 36000 to 36040 . Use your answer to part a. to estimate the change in cost to the firm.
2. The demand function for a firm's product is given by $Q=\frac{30 \sqrt{6 Y+5 p_{s}}}{3 p+5}$, where

- Q is the monthly demand for the firm's product, measured in 1000's of units,
- Y is the average monthly disposable income in the market for the firm's product, measured in 1000s of dollars,
- p_{s} is the average price of a substitute for the firm's product, measured in dollars,
- p is the price of the firm's product, also measured in dollars.
a. Find $Q, Q_{Y}, Q_{p_{s}}$ and Q_{p} when the monthly income is $\$ 2500$ and the prices are $p_{s}=17$ and $p=15$. Round your (final) answers to two decimal places.
b. Compute the income-elasticity of demand for the firm's product at the point in part a.
c. Use linear approximation and your answer to a. to estimate the change in demand for the firm's product if the price of the firm's product increases to $\$ 16$ and the price of substitutes increases to $\$ 18$, but income remains fixed.
d. Use your answer to part b. to estimate the percentage change in demand for the firm's product if the average income increases to $\$ 2600$ while the prices stay the same as they were in part a.

3. Find the indicated partial derivatives of the functions below.
(a) $z=3 x^{2}+4 x y-5 y^{2}-4 x+7 y-2$,

$$
z_{y x}=
$$

$$
z_{x x}=
$$

(b) $F(u, v, w)=60 u^{2 / 3} v^{1 / 6} w^{1 / 2}$

$$
\begin{aligned}
& \frac{\partial^{2} F}{\partial w \partial u}= \\
& \frac{\partial^{2} F}{\partial v^{2}}=
\end{aligned}
$$

(c) $w=x^{2} z \ln \left(y^{2}+z^{3}\right)$
$w_{x x}=$
$w_{y z}=$
$w_{x y z}=$
(d) $q(u, v)=\frac{u^{2} v-3 u v^{3}}{2 u+3 v}$ $\frac{\partial^{2} q}{\partial u^{2}}=$

