Solutions

1. Compute the definite integrals below.
(a) $\int_{0}^{2} 2 x^{3}+x^{2}-5 x+2 d x=\frac{1}{2} x^{4}+\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+\left.2 x\right|_{0} ^{2}$ $=\left(8+\frac{8}{3}-10+4\right)-(0+0-0+0)=\frac{14}{3}$
(b) $\int_{1}^{8} 2 \sqrt[3]{t}+\frac{3}{\sqrt[3]{t^{2}}} d t=\int_{1}^{8} 2 t^{1 / 3}+3 t^{-2 / 3} d t=\frac{3}{2} t^{4 / 3}+\left.9 t^{1 / 3}\right|_{1} ^{8}$

$$
=\left(\frac{3}{2} \cdot 16+9 \cdot 2\right)-\left(\frac{3}{2}+9\right)=31.5
$$

(c) Use the substitution $u=4 x+1 \Longrightarrow d x=\frac{1}{4} d u$. This also causes the limits of integration to change: $x=0 \Longrightarrow u=1$ and $x=4 \Longrightarrow u=17 \ldots$
$\int_{0}^{4} \frac{5}{4 x+1} d x=\frac{5}{4} \int_{1}^{17} \frac{1}{u} d u=\left.\frac{5}{4} \ln u\right|_{1} ^{17}=\frac{5}{4} \ln 17-\frac{5}{4} \ln 1=\frac{5 \ln 17}{4} \approx 3.5415$
(d) Use the substitution $u=-0.04 t \Longrightarrow d t=-25 d u$. This also causes the limits of integration to change: $t=0 \Longrightarrow u=0$ and $t=20 \Longrightarrow u=-0.8 \ldots$

$$
\begin{aligned}
\int_{0}^{20} 500 e^{-0.04 t} d t & =-12500 \int_{0}^{-0.8} e^{u} d u=-\left.12500 e^{u}\right|_{0} ^{-0.8} \\
& =-12500 e^{-0.8}-\left(-12500 e^{0}\right) \\
& =12500\left(1-e^{-0.8}\right) \approx 6883.388
\end{aligned}
$$

(e) Use the substitution $u=t^{2}+9 \Longrightarrow d u=2 t d t \Longrightarrow t d t=\frac{1}{2} d u$. This also changes the limits of integration: $t=0 \Longrightarrow u=9$ and $t=4 \Longrightarrow u=25 \ldots$

$$
\int_{0}^{4} 3 t \sqrt{t^{2}+9} d t=\frac{3}{2} \int_{9}^{25} u^{1 / 2} d u=\left.\frac{3}{2} \cdot \frac{u^{3 / 2}}{3 \nmid 2}\right|_{9} ^{25} 25^{3 / 2}-9^{3 / 2}=125-27=98
$$

2. Find the area of the region bounded by the graphs $y=2 \sqrt{x}$ and $y=1-2 x$, and the lines $x=1$ and $x=4$.

If $1 \leq x \leq 4$, then $2 \sqrt{x}>1-2 x$, as illustrated in Figure ?? below, and the region whose area we want to calculate is the region R in this figure bounded by the red line segments.
This means that

$$
\begin{aligned}
\operatorname{area}(R) & =\int_{1}^{4} 2 \sqrt{x}-(1-2 x) d x \\
& =\int_{1}^{4} 2 x+2 x^{1 / 2}-1 d x \\
& =x^{2}+\frac{4}{3} x^{3 / 2}-\left.x\right|_{1} ^{4}=\left(16+\frac{32}{3}-4\right)-\left(1+\frac{4}{3}-1\right)=\frac{64}{3}
\end{aligned}
$$

Figure 1: The region R in problem 2.
3. Find the Gini coefficient of inequality for the nation with income distribution curve

$$
y=0.5 x^{3}+0.3 x^{2}+0.2 x
$$

where $y \cdot 100 \%$ is the percentage of national income earned by the poorest $x \cdot 100 \%$ of the population.

Recall (see exercise 59 in section 14.9 and your notes) that the Gini coefficient of inequality for a nation whose income distribution curve is given by $y=f(x)$, is given by

$$
\gamma=\frac{\int_{0}^{1} x-f(x) d x}{\int_{0}^{1} x d x}=2 \int_{0}^{1} x-f(x) d x=1-2 \int_{0}^{1} f(x) d x
$$

In this problem, $f(x)=0.5 x^{3}+0.3 x^{2}+0.2 x$, so
$\gamma=1-2 \int_{0}^{1} 0.5 x^{3}+0.3 x^{2}+0.2 x d x=1-2\left[\frac{x^{4}}{8}+\frac{x^{3}}{10}+\left.\frac{x^{2}}{10}\right|_{0} ^{1}\right]=1-2\left(\frac{13}{40}-0\right)=0.35$
4. The marginal propensity to save of a small nation is given by

$$
\frac{d S}{d Y}=\frac{Y+5}{9 Y+10}
$$

where savings S and national income Y are both measured in billions of dollars. Express the total change in national savings when income increases from $\$ 10$ billion to $\$ 15$
billion as a definite integral, and find its value. What is the total change in national consumption?

From the fundamental theorem of calculus, it follows that

$$
\Delta S=S(15)-S(10)=\int_{10}^{15} \frac{d S}{d Y} d Y
$$

so

$$
\begin{aligned}
\Delta S & =\int_{10}^{15} \frac{Y+5}{9 Y+10} d Y \\
& =\frac{1}{9} \int_{100}^{145} \frac{\frac{1}{9}(u-10)+5}{u} d u \\
& =\frac{1}{81} \int_{100}^{145} 1+\frac{35}{u} d u \\
& =\left.\frac{1}{81}(u+35 \ln |u|)\right|_{100} ^{145} \\
& =\left(\frac{145}{81}+\frac{35}{81} \ln 145\right)-\left(\frac{100}{81}+\frac{35}{81} \ln 100\right) \approx 0.7161
\end{aligned}
$$

The total change in consumption is given by the identity $C=Y-S$, so

$$
\Delta C=\Delta Y-\Delta S \approx 5-0.7161=4.2839
$$

