Solutions

1. Compute the indefinite integrals below.
(a) $\int \frac{3 x d x}{\sqrt[3]{x^{2}+1}}=\ldots$
$\left(^{*}\right)$ Substitute $u=x^{2}+1 \Longrightarrow d u=2 x d x \Longrightarrow 3 x d x=\frac{3}{2} d u$

$$
\begin{aligned}
\int \frac{3 x d x}{\sqrt[3]{x^{2}+1}} & =\int \frac{3 / 2 d u}{\sqrt[3]{u}}=\frac{3}{2} \int u^{-1 / 3} d u=\frac{3}{2} \cdot \frac{u^{2 / 3}}{2 / 3}+C \\
& =\frac{9}{4} u^{2 / 3}+C=\frac{9}{4}\left(x^{2}+1\right)^{2 / 3}+C
\end{aligned}
$$

(b) $\int\left(x^{2}+2 x\right)\left(x^{3}+3 x^{2}-1\right)^{3} d x=\ldots$
(*) Substitute $u=x^{3}+3 x^{2}-1 \Longrightarrow d u=\left(3 x^{2}+6 x\right) d x \Longrightarrow\left(x^{2}+2 x\right) d x=\frac{1}{3} d u$

$$
\int\left(x^{2}+2 x\right)\left(x^{3}+3 x^{2}-1\right)^{3} d x=\frac{1}{3} \int u^{3} d u=\frac{1}{12} u^{4}+C=\frac{1}{12}\left(x^{3}+3 x^{2}-1\right)^{4}+C
$$

(c) $\int 1000 e^{-0.05 t} d t=\ldots$
(*) Substitute $u=-0.05 t \Longrightarrow d u=-0.05 d y \Longrightarrow d t=-20 d u$

$$
\int 1000 e^{-0.05 t} d t=-20,000 \int e^{u} d u=-20,000 e^{u}+C=-20,000 e^{-0.05 t}+C
$$

(d) $\int \frac{t^{2}+5}{3 t+1} d t=\ldots$
${ }^{(*)}$ This one can be done using long division (of polynomials)

$$
\frac{t^{2}+5}{3 t+1}=\frac{1}{3} t-\frac{1}{9}+\frac{46 / 9}{3 t+1}
$$

to simplify the integrand before integration. The integration will require substituting $u=3 t+1$. Alternatively, you can make this substitution in the original integral. This also requires solving for t (in the numerator):

$$
u=3 t+1 \Longrightarrow t=\frac{1}{3}(u-1) \text { and } u=3 t+1 \Longrightarrow d u=3 d t \Longrightarrow d t=\frac{1}{3} d u
$$

Using the second approach, we see that

$$
\begin{aligned}
\int \frac{t^{2}+5}{3 t+1} d t & =\frac{1}{3} \int \frac{\left(\frac{1}{3}(u-1)\right)^{2}+5}{u} d u=\frac{1}{3} \int \frac{\frac{1}{9} u^{2}-\frac{2}{9} u+\frac{46}{9}}{u} d u \\
& =\frac{1}{27} \int u-2+\frac{46}{u} d u=\frac{1}{54} u^{2}-\frac{2}{27} u+\frac{46}{27} \ln |u|+C \\
& =\frac{1}{54}(3 t+1)^{2}-\frac{2}{27}(3 t+1)+\frac{46}{27} \ln |3 t+1|+C
\end{aligned}
$$

(*) This can be further simplified, if desired:

$$
\begin{aligned}
& =\frac{1}{54}\left(9 t^{2}+6 t+1\right)-\frac{2}{9} t-\frac{2}{27}+\frac{46}{27} \ln |3 t+1|+C \\
& =\frac{1}{6} t^{2}-\frac{1}{9} t+\frac{46}{27} \ln |3 t+1|+C
\end{aligned}
$$

which is the answer your would get if you took the long-division approach. Note that the constants $2 / 27$ and $1 / 54$ were 'absorbed' by the constant of integrations C.
2. Find the function $y=g(x)$, given that $y^{\prime \prime}=x^{2}-1, g^{\prime}(1)=2$ and $g(1)=2$.

First solve one initial value problem to find y^{\prime}, by integrating $y^{\prime \prime}$:

$$
y^{\prime}=\int y^{\prime \prime} d x=\int x^{2}-1 d x=\frac{x^{3}}{3}-x+C_{1} .
$$

Next, solve for C_{1} using the initial value for y^{\prime} :

$$
2=y^{\prime}(1)=\frac{1^{3}}{3}-1+C_{1} \Longrightarrow C_{1}=2+1-\frac{1}{3}=\frac{8}{3} .
$$

So, $y^{\prime}=\frac{x^{3}}{3}-x+\frac{8}{3}$, and now we repeat the process to find $y=g(x)$.

$$
g(x)=\int y^{\prime} d x=\int \frac{x^{3}}{3}-x+\frac{8}{3} d x=\frac{x^{4}}{12}-\frac{x^{2}}{2}+\frac{8 x}{3}+C_{2} .
$$

Use the initial data for $g(x)$ to solve for C_{2} :

$$
2=g(1)=\frac{1}{12}-\frac{1}{2}+\frac{8}{3}+C_{2} \Longrightarrow C_{2}=-\frac{1}{4}
$$

giving the final solution $g(x)=\frac{x^{4}}{12}-\frac{x^{2}}{2}+\frac{8 x}{3}-\frac{1}{4}$.
(*) The next two problems are solved using the same idea. If $y=f(x)+C$, then even if we don't know C, we can compute Δy - the change in the value of y - using the formula

$$
\Delta y=y\left(x_{2}\right)-y\left(x_{1}\right)=f\left(x_{2}\right)+C-\left(f\left(x_{1}\right)+C\right)=f\left(x_{2}\right)-f\left(x_{1}\right)
$$

I.e., the change in y does not depend on the constant. This is useful when we know the derivative y, but not y itself. This is essentially the same as computing a definite integral, which we will learn next.
3. A firm's marginal revenue and marginal cost functions are

$$
\frac{d r}{d q}=100-\sqrt{3 q+10} \quad \text { and } \quad \frac{d c}{d q}=0.2 q+65
$$

respectively. How will the firm's profit change if output is increased from $q=30$ to $q=53$?
The profit function is given by $\pi=r-c$, so the derivative of the profit function (in this problem) is given by

$$
\frac{d \pi}{d q}=\frac{d r}{d q}-\frac{d c}{d q}=100-\sqrt{3 q+10}-(0.2 q+65)=35-0.2 q-\sqrt{3 q+10}
$$

This means that the profit function is given by

$$
\begin{aligned}
\pi & =\int 35-0.2 q-\sqrt{3 q+10} d q=\int 35-0.2 q d q-\int \sqrt{3 q+10} d q \\
& =35 q-0.1 q^{2}-\frac{1}{3} \int u^{1 / 2} d u=35 q-0.1 q^{2}-\frac{1}{3} \cdot \frac{u^{3 / 2}}{3 / 2}+C \\
& =35 q-0.1 q^{2}-\frac{2}{9}(3 q+10)^{3 / 2}+C
\end{aligned}
$$

using the substitution $u=3 q+10 \Longrightarrow d u=\frac{1}{3} d q$ in the last integral on first line.
It follows that the change in the firm's profit is

$$
\begin{aligned}
\Delta \pi & =\pi(53)-\pi(30) \\
& =\left(35 \cdot 53-0.1 \cdot 2809-\frac{2}{9} \cdot 169^{3 / 2}\right)-\left(35 \cdot 30-0.1 \cdot 900-\frac{2}{9} \cdot 100^{3 / 2}\right) \\
& =1085.8 \overline{777}-737.7 \overline{777}=348.10
\end{aligned}
$$

4. The marginal propensity to consume of a small nation is given by

$$
\frac{d C}{d Y}=\frac{9 Y+10}{10 Y+1}
$$

where consumption C and national income Y are both measured in billions of dollars. Find the total change in national consumption and saving, if income increases from $\$ 10$ billion to $\$ 15$ billion.

Using the substitution

$$
u=10 Y+1 \Longrightarrow Y=\frac{1}{10}(u-1) \text { and } d Y=\frac{1}{10} d u
$$

to compute the integral, we see that the nation's consumption function is

$$
\begin{aligned}
C & =\int \frac{9 Y+10}{10 Y+1} d Y=\frac{1}{10} \int \frac{\frac{9}{10}(u-1)+10}{u} d u \\
& =\frac{1}{100} \int \frac{9 u+91}{u} d u=\frac{1}{100} \int 9+\frac{91}{u} d u \\
& =\frac{9}{100} u+\frac{91}{100} \ln |u|+K \\
& =\frac{9}{100}(10 Y+1)+\frac{91}{100} \ln |10 Y+1|+K \\
& =0.9 Y+0.91 \ln |10 Y+1|+K
\end{aligned}
$$

Observe that the constant $9 / 100$ in the fourth line was 'absorbed' by the constant of integration K. It follows that the change in consumption is

$$
\Delta C=C(15)-C(10)=0.9 \cdot 15+0.91 \ln |151|-0.9 \cdot 10-0.91 \ln |101| \approx 4.866
$$

and therefore the change in saving is

$$
\Delta S=\Delta Y-\Delta C \approx 5-4.866=0.134
$$

In words, if income increases from $\$ 10$ billion to $\$ 15$ billion, consumption will increase by about $\$ 4.866$ billion and saving will increase by about $\$ 134$ million.
(*) I also used the fact from economics that $Y=C+S$, so $S=Y-C$ and therefore $\Delta S=\Delta Y-\Delta C$.

