
ams/econ 11b Class Notes — 12/4/17 ucsc

(*) The Envelope Theorem and constrained optimization

As we saw in class on Monday (and Friday, and in Supplemental Notes #5), one of the
important applications of the envelope theorem is to constrained optimization.

Suppose that we solve the problem of finding the maximum/minimum value of the (objec-
tive) function f(x, y, z) subject to a constraint of the form g(x, y, z) = c using the method
of Lagrange multipliers. Briefly, we form the Lagrangian

F (x, y, z, λ) = f(x, y, z) − λ(g(x, y, z) − c)

and find the critical point (x∗, y∗, z∗, λ∗) by solving the system of equations

Fx = 0, Fy = 0, Fz = 0 and Fλ = 0.

Since Fλ = −(g(x, y, z) − c), it follows that g(x∗, y∗, z∗) − c = 0, and therefore

F ∗ = F (x∗, y∗, z∗,Λ∗) = f(x∗, y∗, z∗) − λ∗
=0︷ ︸︸ ︷

(g(x∗, y∗, z∗) − c) = f(x∗, y∗, z∗) = f ∗.

That is to say the constrained optimum f ∗ is always the same as the critical value of the
Lagrangian F ∗.

This is useful, because it allows us to easily find the rate of change of f ∗ with respect to the
constraint c. Specifically, we can use the envelope theorem as follows.

f∗=F ∗︷ ︸︸ ︷
df ∗

dc
=
dF ∗

dc

Envelope Theorem︷ ︸︸ ︷
=
∂F

∂c

∣∣∣∣ x=x∗
y=y∗
z=z∗
λ=λ∗

= λ
∣∣∣ x=x∗
y=y∗
z=z∗
λ=λ∗

= λ∗

because

∂F

∂c
=

∂

∂c

(
f(x, y, z) − λ(g(x, y, z) − c)

)
=

∂

∂c

(
f(x, y, z) − λg(x, y, z) + λc

)
= λ.

In words, the critical value of the multiplier λ∗ gives the rate of change of the constrained
optimum f ∗ with respect to the constraining parameter c. In practical terms, linear ap-
proximation tells us that if the constraining parameter changes by ∆c, then the constrained
optimum changes by ∆f ∗ ≈ (df ∗/dc) ·∆c = λ∗ ·∆c. In particular, if ∆c = 1, then ∆f ∗ ≈ λ∗.

This is perhaps easier to understand in specific examples.

(a) In the utility maximization problem — maximize the utility function U(x, y, z) subject
to the budget constraint pxx+ pyy+ pzz = B — λ∗ is (approximate) amount by which max
utility U∗ increases if the budget increases by ∆B = $1.00. In this example, λ∗ is marginal
utility of $1.00.

(b) In the cost minimization problem — minimize the cost C(k, l) of producing an output
of Q(k, l) = q — λ∗ is the (approximate) amount by which cost increases when output
increases by one unit. I.e., λ∗ is the marginal cost in this case.
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(*) But...

The interpretation of λ∗ given above is just one (important) application of the envelope
theorem. The envelope theorem is much more general than that, as the example below
illustrates.

Consider the utility maximization problem that we did on Friday:

Find the quantities x, y and z of goods 1, 2 and 3 that maximize a consumer’s
monthly utility

U(x, y, z) = 6 lnx+ 9 ln y + 10 ln z

if the average prices of goods 1, 2 and 3 are px = 10, py = 20 and pz = 25,
respectively and the consumer’s monthly budget is B = $5000.

The Lagrangian in this case is

F (x, y, z, λ) = U(x, y, z)−λ(pxx+pyy+pzz−B) = 6 lnx+9 ln y+10 ln z−λ(10x+20y+25z−5000),

and the critical point we found was (x∗, y∗, z∗, λ∗) = (120, 90, 80, 1/200). If the price px
of good #1 increases from px = 10.00 to px = 10.50 (and nothing else changes), then we
can expect the consumer’s max utility to decrease. To estimate the amount by which U∗

changes, we can use linear approximation:

∆U∗ ≈ dU∗

dpx
· ∆px.

We know that ∆px = 0.50, and we can use the envelope theorem to find dU∗/dpx in the
same way that we found dU∗/dB. Specifically,

U∗=F ∗︷ ︸︸ ︷
dU∗

dpx
=
dF ∗

dpx

envelope theorem︷ ︸︸ ︷
=

∂F

∂px

∣∣∣∣ x=x∗
y=y∗
z=z∗
λ=λ∗

= −λ∗x∗ = −3

5
,

because
∂F

∂px
=

∂

∂px

(
U(x, y, z) − λ(pxx+ pyy + pzz −B)

)
= −λx.

I.e., if px increases to 10.50, the consumers (max) utility will change by (approximately)
−(3/5)(0.5) = −0.3 utils.
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