(*) The chain rule in several variables

Given a function of two variable $z=f(x, y)$, where both of the variables x, y are themselves functions of another variable,

$$
x=x(t) \quad \text { and } \quad y=y(t)
$$

it follows that z is (indirectly) a function of t as well. I.e.,

$$
z=f(x, y)=f(x(t), y(t))=\tilde{f}(t)
$$

so it makes sense to compute $d z / d t$, which is done using the several-variables version of the chain rule:

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t} .
$$

More generally (but only slightly), suppose that $w=g(x, y, z)$, where x, y, z are themselves functions of the variables α and β :

$$
x=x(\alpha, \beta), y=y(\alpha, \beta) \text { and } z=z(\alpha, \beta) .
$$

Then w is (indirectly) a function of α and β, and the partial derivatives $\partial w / \partial \alpha$ and $\partial w / \partial \beta$ are given by

$$
\frac{\partial w}{\partial \alpha}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha} \quad \text { and } \quad \frac{\partial w}{\partial \beta}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \beta}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \beta}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \beta} .
$$

(*) Explanation

I'll explain the first half of the second case above using linear approximation. ${ }^{\dagger}$ The same explanation works in general.
Suppose that the variable α changes by a small amount $\Delta \alpha$ and that the variable β is held fixed. In this case, the three variables x, y and z will change by the amounts $\Delta x, \Delta y$ and Δz, and if $\Delta \alpha$ is small then these changes can be approximated using linear approximation:

$$
\begin{equation*}
\Delta x \approx \frac{\partial x}{\partial \alpha} \cdot \Delta \alpha, \quad \Delta y \approx \frac{\partial y}{\partial \alpha} \cdot \Delta \alpha \quad \text { and } \quad \Delta z \approx \frac{\partial z}{\partial \alpha} \cdot \Delta \alpha \tag{1}
\end{equation*}
$$

Now when x, y and z all change, then w will change by some amount Δw. If the change $\Delta \alpha$ is small enough, then the resulting changes $\Delta x, \Delta y$ and Δz will also be small, which means that Δw can also be approximated using (the more general form of) linear approximation:

$$
\begin{equation*}
\Delta w \approx \frac{\partial w}{\partial x} \cdot \Delta x+\frac{\partial w}{\partial y} \cdot \Delta y+\frac{\partial w}{\partial z} \cdot \Delta z \tag{2}
\end{equation*}
$$

Substituting the approximations from Equation (1) into the approximation Equation (2), we see that if $\Delta \alpha$ is small enough, then

$$
\begin{equation*}
\Delta w \approx \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha} \cdot \Delta \alpha+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha} \cdot \Delta \alpha+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha} \cdot \Delta \alpha \tag{3}
\end{equation*}
$$

[^0]and dividing both sides of (3) by $\Delta \alpha$ shows that
$$
\frac{\Delta w}{\Delta \alpha} \approx \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}
$$
and furthermore, this approximation becomes increasingly accurate as $\Delta \alpha$ shrinks to 0 . In other words,
$$
\frac{\partial w}{\partial \alpha}=\lim _{\Delta \alpha \rightarrow 0} \frac{\Delta w}{\Delta \alpha}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}
$$
as the chain rule states.

(*) The Envelope Theorem
 Read Supplementary Note \#4. ${ }^{\ddagger}$

[^1]
[^0]: ${ }^{\dagger}$ See the Lecture Notes from $11 / 13 / 17$ on the course website.

[^1]: ${ }^{\ddagger}$ Again, right? Because you already read it at least once, as suggested in the syllabus.

