(*) Substitution

From the chain rule (for the differentiation of composite functions) we know that

$$
\frac{d}{d x}\left(F(g(x))=F^{\prime}(g(x)) g^{\prime}(x)\right.
$$

Writing $F^{\prime}(x)=f(x)$, this gives the corresponding rule for integration

$$
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

The difficulty lies in recognizing that an integrand is the derivative of a composite function. What we do is look for the following pattern: an integrand that is the product of a composite function and a simpler function, i.e., an integral that looks like this

$$
\int f(g(x)) k(x) d x
$$

If $k(x)=g^{\prime}(x)$, then we're in business. To compute $\int f(g(x)) g^{\prime}(x) d x$, we substitute (rename) $u=g(x)$, which means that $d u=g^{\prime}(x) d x$ so that

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(\overbrace{g(x)}^{u}) \overbrace{g^{\prime}(x) d x}^{d u}=\int f(u) d u .
$$

We still have some work to do, but $\int f(u) d u$ is a simpler integral than the one we started with.
Example. To compute $\int 2 x \sqrt{x^{2}+3} d x$, we first notice that $\left(x^{2}+3\right)^{\prime}=2 x$, so that substituting $u=x^{2}+3$ means that $d u=2 x d x$. This allows us to simplify (and calculate) the integral:

$$
\int 2 x \sqrt{x^{2}+3} d x=\int \underbrace{\sqrt{x^{2}+3}}_{\sqrt{u}} \overbrace{2 x d x}^{d u}=\int u^{1 / 2} d u=\frac{u^{3 / 2}}{3 / 2}+C=\frac{2}{3}\left(x^{2}+3\right)^{3 / 2}+C .
$$

The last step is to replace u by $x^{2}+3$ in the answer.

(*) Adjusting the constant factor

More generally, if in the integral $\int f(g(x)) k(x) d x, k(x)=a \cdot g^{\prime}(x)$ for some (nonzero) constant a, then substituting $u=g(x)$ will still work. In this case we have $d u=g^{\prime}(x) d x$ and since $k(x)=a g^{\prime}(x)$, it follows that $k(x) d x=a g^{\prime}(x) d x=a\left(g^{\prime}(x) d x\right)=a d u$, so

$$
\int f(g(x)) k(x) d x=\int f(\overbrace{g(x)}^{u}) \overbrace{a g^{\prime}(x) d x}^{a d u}=\int f(u) a d u=a \int f(u) d u
$$

Example. To compute $\int 5 x \sqrt{x^{2}+3} d x$, we first notice that $\left(x^{2}+3\right)^{\prime}=2 x$, so that substituting $u=x^{2}+3$ means that $d u=2 x d x$. Dividing by 2 shows that $x d x=\frac{1}{2} d u$ and multiplying by 5 results in the identity $5 x d x=\frac{5}{2} d u$. Now we can integrate:

$$
\int 5 x \sqrt{x^{2}+3} d x=\int \underbrace{\sqrt{x^{2}+3}}_{\sqrt{u}} \overbrace{5 x d x}^{\frac{5}{2} d u}=\frac{5}{2} \int u^{1 / 2} d u=\frac{5}{2} \cdot \frac{u^{3 / 2}}{3 / 2}+C=\frac{5}{3}\left(x^{2}+3\right)^{3 / 2}+C .
$$

(*) Quiz 1. Find the function $y=f(x)$ satisfying (i) $y^{\prime}=\frac{x^{2}+2 x+3}{5 x}$, and (ii) $y(1)=3$.

Solution.

Step 1. Integrate

$$
\int \frac{x^{2}+2 x+3}{5 x} d x=\int \frac{1}{5} x+\frac{2}{5}+\frac{3}{5} \cdot \frac{1}{x} d x=\frac{x^{2}}{10}+\frac{2}{5} x+\frac{3}{5} \ln |x|+C,
$$

i.e., the solution y has the form $y=\frac{1}{10} x^{2}+\frac{2}{5} x+\frac{3}{5} \ln |x|+C$, for some (as of yet undetermined) constant C.

Step 2. Solve for C
From the given data $y(1)=3$, we see that

$$
3=y(1)=\frac{1}{10} \cdot 1^{2}+\frac{2}{5} \cdot 1+\frac{3}{5} \ln |1|+C=\frac{1}{10}+\frac{2}{5}+\frac{3}{5} \cdot 0+C=\frac{1}{2}+C \Longrightarrow C=3-\frac{1}{2}=\frac{5}{2},
$$

so the function is

$$
y=\frac{1}{10} x^{2}+\frac{2}{5} x+\frac{3}{5} \ln |x|+\frac{5}{2} .
$$

