
ams/econ 11b Class Notes — 10/30/17; 11/2/17 ucsc

(*) Separable differential equations

In its most general form, a (first order, ordinary) differential equation is an equation of the
form

Φ(y, y′, x) = 0,

whose solutions are functions y = f(x). In general these equations can be very difficult to
solve explicitly and frequently people use computers and numerical algorithms to generate
approximate solutions.

On the other hand, certain differential equations can be relatively easy to solve, among these
are separable differential equations. These are differential equations which can be put in
the form

dy

dx
=
g(x)

h(y)
.

This type of equation is called separable because multiplying the equation by h(y)·dx results
in an equation where the variables x and y have been separated, an expression that equates
two differentials,

h(y) dy = g(x) dx,

(hence the name differential equation). Integrating both sides of the separated equation
leads to an algebraic equation,∫

h(y) dy =

∫
g(x) dx =⇒ H(y) = G(x) + C,

which is called an implicit solution of the original differential equation (because it implies
a relation between y and x). Solving the algebraic equation for y results in an explicit
solution,

y = H−1(G(x) + C),

or more accurately, a family of solutions, one for each possible value of C. Finally, given
data in the form y(x0) = y0, we can solve for C and find the unique solution y = f(x) of
the initial value problem

y′ =
g(x)

h(y)
and y(x0) = y0.

(It can be shown that if g(x) is continuous in an interval around x0 and h(y) is continuous
and h(y) 6= 0 in an interval around y0, then a unique solution does exist. Finding it easily
is another question.)

Example 1. Find the function y = f(x) satisfying

y′ =
2x+ 1

y + 2
and y(1) = 1.

Step 1. Separate:

y′ =
2x+ 1

y + 2
=⇒ dy

dx
=

2x+ 1

y + 2
=⇒ y + 2 dy = 2x+ 1 dx.
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Step 2. Integrate:∫
y + 2 dy =

∫
2x+ 1 dx =⇒ y2

2
+ 2y = x2 + x+ C.

Step 3. Solve for y:

y2

2
+ 2y = x2 + x+ C =⇒ y2 + 4y = 2x2 + 2x+ C =⇒ y2 + 4y −

(
2x2 + 2x+ C

)
= 0

The last equation on the right is a quadratic equation in y of the from ay2 + by + c = 0,
where a = 1, b = 4 and c = − (2x2 + 2x+ C), and we can solve it using the quadratic
formula:

y =
−b±

√
b2 − 4ac

2a
=
−4±

√
16 + 4 (2x2 + 2x+ C)

2

=
−�4 2 ± �2

√
4 + 2x2 + 2x+ C

�2
(factoring 4 out of the

√
)

= −2±
√

2x2 + 2x+ C (‘absorbing’ the term 4 into the constant C)

So y = −2 ±
√

2x2 + 2x+ C and to solve for C and determine whether the ‘±’ is + or −,
we use the data, y(1) = 1.

First, since y(1) = 1 > 0, we must choose the + sign, otherwise y < 0 when x = 1. This
means that

1 = y(1) = −2 +
√

2 · 12 + 2 · 1 + C =⇒
√

4 + C = 3 =⇒ C = 5,

so the (unique) solution to this initial value problem is

y =
√

2x2 + 2x+ 5− 2.

Exercise: Compute y′ and verify that it satisfies the differential equation.

(*) Elasticity

Given a functional relation y = f(x), the x-elasticity of y is defined as

η
y/x = lim

∆x→0

%∆y

%∆x
=
dy

dx
· x
y
,

where %∆y and %∆x are the percentage-changes in y and x, respectively.

Economic theory will sometimes dictate that the x-elasticity of y has certain characteristics,
and these characteristics can lead to a differential equation for the (unknown) function
y = f(x).

Example 2. A short term production function

Q = P (L)
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is one where the capital input (K) is considered to be fixed while the labor input (L) is
variable. The variable Q is output.

In some contexts, economists will specify that the labor-elasticity of output is constant. The
condition ηQ/L = β, where β is the (typically unknown) constant value of of the elasticity,
leads to the separable differential equation

dQ

dL
· L
Q

= β =⇒ dQ

Q
= β · dL

L
.

Integrating both sides ∫
dQ

Q
= β

∫
dL

L
,

leads to the implicit relation
lnQ = β lnL+ C.

To solve for Q, we exponentiate both sides,

elnQ = eβ lnL+C = eC · eln(Lβ) =⇒ Q = ALβ,

where A = eC . In other words, if the labor elasticity of output is constant then the short
term production function is a power function, where the power is equal to the constant
elasticity.†

This example illustrates another common feature of differential equations, namely that they
might include unspecified parameters. The specific solution of such an equation might
require more than one data point.

Example 2. (continued) Suppose that a short term production function Q = P (L) has
constant labor-elasticity of output, then we know that

Q = ALβ

but we can’t know the values of A or β without more information. Since there are two
unknown parameters, it stands to reason that we will need two data points, so suppose that
when labor input is L0 = 100, the output is Q0 = 1000 and when labor input is L1 = 200,
the output is Q1 = 1500. This data, together with the relation Q = ALβ leads to the pair
of equations below for A and β:

1000 = A(100)β (1)

1500 = A(200)β (2)

To solve this pair of equations, we can (i) take logarithms of both sides, which converts
them into the following pair of linear equations (for β and lnA)

ln 1000 = lnA+ β ln 100

ln 1500 = lnA+ β ln 200,

†The conclusion is of course general — if ηy/x = β, then y = Axβ , where A is another constant — it doesn’t
matter what the variables x and y represent.
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which we know how to solve,‡ or we can (ii) proceed as follows.

The quotient of the lefthand side of (2) by the lefthand side of (2) is equal to the quotient
of the righthand side of (2) by the righthand side of (2):

1500

1000
=

��A(200)β

��A(100)β
=⇒ 1.5 = 2β,

This has the effect of eliminating the parameter A. Now, taking logarithms of both sides of
the equation on the right and moving things around, gives the value of β:

ln 1.5 = β ln 2 =⇒ β =
ln 1.5

ln 2
(≈ 0.585).

Finally, returning to (1) again, we can solve for A:

1000 = A(100)β =⇒ A = 1000 · (100)−β = 1000 · (100)− ln 1.5/ ln 2 ≈ 67.62.

So the production function is
Q ≈ 67.22L0.585.

Exercise. Solve the pair of linear equations at the bottom of the last page and check that
you obtain the same values for A and β as above.

In many cases, elasticity is not constant. This is certainly common for price-elasticity of
demand, where the elasticity changes as the price changes, i.e., where the price-elasticity
of demand is a function of the price. Happily,§ these assumptions also lead to separable
differential equations

Example 3. The price-elasticity of demand q for a certain good is assumed to be propor-
tional to the square root of the price p of that good. When the price is p0 = 9, the demand
is q0 = 500 and when the price is p1 = 25, the demand is q1 = 300.

What will demand be when the price is p2 = 36?

The phrase ‘proportional to’ means ‘multiple of ’, so that the assumption above about the
price-elasticity of demand leads to the separable differential equation

η
q/p = k

√
p =⇒ dq

dp
· p
q

= k
√
p =⇒ dq

q
= k

√
p

p
dp = kp−1/2 dp,

where k is the (unknown) constant of proportionality. Integrating both sides of the equation
on the right yields an implicit relation between q and p,∫

dq

q
= k ∈ p−1/2 dp =⇒ ln q = k · p

1/2

1/2
+ C = k1p

1/2 + C,

where k1 = 2k is still an unknown constant. As in the previous example, we solve for q by
exponentiating both sides of the last equation,

eln q = ek1p
1/2+C = eC · ek1p1/2 =⇒ q = Aek1p

1/2

,

‡Right?
§Depending on your perspective.

4



where (also as before) A = eC .

Once again, we now use the data to solve for A and k1, using the two equations q0 = Aek1
√
p0

and q1 = Aek1
√
p1 :

500 = Aek1
√

9 = Ae3k1

300 = Aek1
√

25 = Ae5k1

Dividing left side by left side and right side by right side again eliminates the A (again),

300

500
=

��Ae5k1

��Ae3k1
=⇒ 0.6 = e5k1−3k1 = e2k1 ,

and taking logarithms again gives

ln 0.6 = 2k1 =⇒ k1 =
ln 0.6

2
(≈ −0.2554).

Next, using the first data point (or the second) we find that

500 = Ae3k1 =⇒ A = 500e−3k1 (≈ 1075.83),

and finally, when the price is p2 = 36, the demand will be

q2 = Aek1
√

36 = 500e−3k1e6k1 = 500e3k1 = 500e
3
2

ln 0.6 ≈ 232.38.

(*) Population growth models — Exponential growth

The simplest model for population growth is based on the assumption that the population
grows at a rate proportional to its size. This assumption considers only the factors intrinsic
to the population itself, e.g., birthrate, and leads to the differential equation

dP

dt
= rP,

where P (t) is the size of the population at time t, and r is the intrinsic growth rate. This
equation is easy to solve (after separating the variables):

dP

P
= r dt =⇒

∫
dP

P
= r

∫
dt =⇒ lnP = rt+ C =⇒ P = Aert,

where

• P > 0, so we can drop the absolute value sign.

• A = eC , and in fact...

• A = P (0) = P0, the initial population size.

I.e., the exponential growth model is

P (t) = P0e
rt.
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Example 5. The population of a small island in the year 1950 was 870 people, and in the
year 2000, the population was 1250. Assuming exponential growth, what will the island’s
population be in the year 2050? How about in 2150?

Based on the assumption of exponential growth, we have

P (t) = 870ert,

with time being measured in years, and t = 0 corresponding to the year 1950. This means
that

1250 = P (50) = 870e50r =⇒ e50r =
1250

870
=⇒ 50r = ln(125/87)

=⇒ r =
1

50
ln(125/87) (≈ 0.00725)

Therefore
P (100) = 870e100r ≈ 1796 and P (200) = 870e200r ≈ 3708.

The exponential growth model P = P0e
rt can be quite accurate in the short run, but not

in the long run, because an exponentially growing population will eventually outstrip its
resources. This observation leads to a different model.

(*) Population growth models — Logistic growth

This model accounts for the fact that populations grow in environments that have lim-
ited resources. Such an environment has a carrying capacity, which is the maximum
(sustainable) size for the population growing there.

The logistic model is based on the following assumptions/requirements.

(i) When the population is small relative to the carrying capacity, it should grow at a rate
(approximately) proportional to its size (like exponential growth).

(ii) As the population gets close to the carrying capacity in size, the growth rate should
approach 0.

(iii) If the initial population size is bigger than the carrying capacity, the growth rate should
be negative.

(iv) The model should be as simple as possible.

If the carrying capacity is M and the intrinsic growth rate is r, then the first three assump-
tions translate to

(i) If P/M ≈ 0, then
dP

dt
≈ rP .

(ii) If P/M ≈ 1, then
dP

dt
≈ 0.

(iii) If P/M > 1, then
dP

dt
< 0.
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These assumptions (and the desire for as simple a model as possible), lead to the logistic
equation:

dP

dt
= rP

(
1− P

M

)
,

which satisfies all three conditions:

(*) If P/M ≈ 0, then rP
(
1− P

M

)
≈ rP (1− 0) = rP

(*) If P/M ≈ 1, then rP
(
1− P

M

)
≈ rP (1− 1) = 0

(*) If P/M > 1, then rP
(
1− P

M

)
< 0

The logistic equation is separable and is solved as follows.

First, factor out 1/M from the second factor on the right

dP

dt
= rP

(
1− P

M

)
=

r

M
P (M − P ) .

Then separate
dP

P (M − P )
=

r

M
dt.

Then integrate (using formula #5 in the appendix, with a =M and b = −1)∫
dP

P (M − P )
=

∫
r

M
dt =⇒ 1

M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

M
+ C.

Finally, solve for P

1

��M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

��M
+ C =⇒ ln

∣∣∣∣ P

M − P

∣∣∣∣ = rt+ C

=⇒ P

M − P
= Aert

where A = ±eC .

A little more algebra:

P = (M − P )Aert = AMert − APert =⇒ P + APert = AMert

=⇒ P (1 + Aert) = AMert

=⇒ P =
AMert

1 + Aert

The formula for P (t) can be further manipulated in different ways.

One approach is to divide the numerator and denominator by Aert which gives

P =
M

1 + be−rt
,

where b = A−1. (Our textbook does it this way.)
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Another approach is to replace A by a more meaningful parameter. Both M and r have
meaningful interpretations, and it is relatively easy to express A in terms of M and the
initial population size P0.

If t = 0, then

P0 = P (0) =
AM

1 + A
=⇒ AM = P0(1 + A) = P0 + AP0

=⇒ AM − AP0 = P0 =⇒ A(M − P0) = P0

=⇒ A =
P0

M − P0

Now, substitute this for A in the first expression for P

P =
AMert

1 + Aert
=⇒

P0

M−P0
Mert

1 + P0

M−P0
ert

Finally, multiply both top and bottom by (M − P0)e−rt, which gives

P (t) =
P0M

P0 + (M − P0)e−rt
.

M

P0

t

P

Figure 1: Graph of P =
P0M

P0 + (M − P0)e−rt

Example. A new virus is spreading on a closed network of 5000 computers. By the time
the virus is first spotted, 25 computers are infected, and two hours later 200 computers are
infected. Assuming logistic growth, how many hours before half the network is infected?

In this example, we know the carrying capacity M = 5000 and the initial population size
P0 = 25, so the number of infected computers at time t is

P (t) =
25 · 5000

25 + 4975e−rt
=

5000

1 + 199e−rt
.
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From the data, we have

P (2) =
5000

1 + 199e−2r
= 200 =⇒ 5000 = 200(1 + 199e−2r)

=⇒ 25 = 1 + 199e−2r

=⇒ 24 = 199e−2r

=⇒ e2r =
199

24

=⇒ r =
1

2
ln(199/24)

Finally, solve the equation P (t1) = 5000/2 = 2500:

2500 =
5000

1 + 199e−rt1
=⇒ 1 + 199e−rt1 =

5000

2500
= 2

=⇒ 199e−rt1 = 1 =⇒ ert1 = 199

=⇒ t1 =
ln 199

r
=

ln 199
1
2

ln(199/24)
≈ 5

Conclusion: Half the network will be infected about 5 hours after the virus is first detected.
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