(*) Definitions

1. The function $F(x)$ is an antiderivative of the function $f(x)$ if $F^{\prime}(x)=f(x)$.
2. The collection of all antiderivatives of a function $f(x)$ is called the indefinite integral of $f(x),{ }^{\dagger}$ and denoted by

$$
\int f(x) d x
$$

(*) Comments/Facts

(i) Every continuous function has antiderivatives.
(ii) If a function $f(x)$ has the antiderivative $F(x)$, then for any constant C, the function $F(x)+C$ is also an antiderivative of $f(x)$. Quasi-conversely, if $F(x)$ and $G(x)$ are both antiderivatives of $f(x)$, then $G(x)=F(x)+C$ for some constant C. In other words, if $f(x)$ has an antiderivative, then it has infinitely many and they all have the form $F(x)+C$, where $F(x)$ is any one antiderivative of $f(x)$.
(iii) In terms of the notation for the indefinite integral of $f(x)$, we write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any one antiderivative of $f(x)$ and C (the constant of integration) is an unspecified constant than can take any value.
(iv) The reason that a factor of $d x$ is included in the indefinite integral is due to the (deep and important) relation between antiderivatives and definite integrals, about which we will learn in a week or so.
(*) Integration Rules/Formulas (the basic ones)
(a) $\int f(x) \pm g(x) d x=\left(\int f(x) d x\right) \pm\left(\int g(x) d x\right)$,
i.e., the integral of a sum is equal to the sum of the integrals.
(b) $\int a f(x) d x=a \int f(x) d x$,
i.e., the integral of a constant multiple is the constant multiple of the integral, where a is a nonzero constant.
(c) $\int x^{k} d x=\frac{x^{k+1}}{k+1}+C$, for all $k \neq-1$. The case $k=-1$ is covered next.
(d) $\int x^{-1} d x=\int \frac{d x}{x}=\ln |x|+C$.

[^0]
[^0]: ${ }^{\dagger}$ Technically it is the indefinite integral of the differential $f(x) d x$.

